ІНСТРУКЦІЇ
ДО ЛАБОРАТОРНИХ РОБІТ
Лабораторна робота №2
ВИЗНАЧЕННЯ МОМЕНТУ ІНЕРЦІЇ
МАЯТНИКА МАКСВЕЛЛА
Мета роботи
Визначити експериментально і розрахувати теоретично момент інерції маятника Максвелла.
Прилади та обладнання
Маятник Максвелла, змінні кільця, штанґенциркуль, секундомір.
Опис вимірювального пристрою
Маятник Максвелла – це маховик (1), закріплений на валу (2) і підвішений на біфілярній підвісці (3) до кронштейна (Рис.1).
Момент інерції маятника можна змінювати за допомогою кілець, які накладаються на маховик.
Кронштейн прикріплений до стояка; на кронштейні розміщений фотоелектричний давач і електромагніт для утримання маятника у верхньому положенні. Стояк прикріплений до основи, на якій розміщений електронний блок .
На передній панелі блоку знаходяться: секундомір (4) і клавіші (5), (6), (7). (Рис.2)
Виведення розрахункових формул
Маятник Максвелла, піднятий на деяку висоту h, має потенціальну енерґію mgh. Якщо маятник з такого положення відпустити, то він, опускаючись вниз, здійснює складний поступально-обертальний (плоский) рух. Під час руху вниз потенціальна енерґія маятника зменшується і перетворюється у кінетичну енерґію поступального руху , кінетичну енерґію обертального руху та в роботу проти сил тертя. Якщо тертям знехтувати, то згідно з законом збереження енерґії
. (1)
Знаючи кінцеву лінійну швидкість u точок ободу валу маятника та кінцеву кутову швидкість можна з формули (1) визначити момент інерції маятника Максвелла.
Лінійну швидкість u точок ободу валу маятника можна визначити, знаючи висоту h , на яку піднятий маятник, і час t опускання його з цієї висоти
; . (2)
Виключивши з рівнянь (2) лінійне прискорення ?, з яким опускається маятник, отримаємо:
. (3) Лінійна швидкість u точок ободу валу маятника, його кутова швидкість і радіус R зв’язані між собою співвідношенням
. (4)
На основі (3) і (4) одержимо:
, (5)
де d0 – діаметр валу маятника.
Підставляючи значення u з (3) і із (5) у формулу (1), отримаємо для моменту інерції маятника Максвелла:
. (6)
Врахувавши, що загальна маса маятника m = m0 + mM + mK,
де m0 – маса валу маятника;
mM – маса маховика;
mK – маса допоміжного кільця, одержимо:
. (7) Момент інерції маятника Максвелла, як тіла правильної ґеометричної форми, можна також обчислити теоретично за формулою:
, (8)
де J0 – момент інерції валу маятника,
JM – момент інерції маховика,
JK – момент інерції допоміжного кільця.
Значення моментів інерції окремих складових маятника визначаються за формулами:
; ; . (9)
Отже:
, (10)
де dM – зовнішній діаметр маховика;
dK – зовнішній діаметр допоміжного кільця.

При підготовці до виконання роботи використати:
Теоретична частина. Розділ 1.1.
Послідовність виконання роботи
Увімкнути пристрій в електромережу 220 В.
Накласти на маховик маятника в допоміжне кільце .
Рівномірно намотати з двох кінців на вал маятника нитки і зафіксувати маятник у верхньому положенні за допомогою електромагніта .
Натиснути клавішу 7.
Дії, зазначені в пунктах 3, 4 повторити 5 разів.
Використавши прикріплену до стояка міліметрову лінійку, визначити висоту падіння маятника h, як відстань між крайніми нижніми точками допоміжного кільця у верхньому і нижньому положеннях маятника.
Результати вимірювань, проведених згідно з п.7 і п.8, записати у Табл.1
Заповнити Табл.2 (величини відповідних мас подані на кільці, валу і маховику).
Виміряти штанґенциркулем діаметри валу, маховика і зовнішній діаметр кільця. Вимірювання здійснити по 3 рази в різних напрямах а результати записати у Табл.3.
Перевівши результати вимірювань всіх величин в одиниці СІ, згідно з формулою (7) визначити величину J, а за формулою (10) розрахувати Jt.
Результати розрахунків п.10 занести у Табл.4.
Замінити допоміжне кільце і повторити всі вище зазначені вимірювання та розрахунки.
13.Порівняти одержані значення J і Jt і, використавши (11), оцінити
розбіжність результатів.
. (11)
Таблиці результатів вимірювань і розрахунків
Таблиця 1
№ кільця
t1, с
t2, с
t3, с
t4, с
t5, с
tсер., с
h, мм

1
вимір
вимір
вимір
вимір
вимір
розрах.
вимір

2
вимір
вимір
вимір
вимір
вимір
розрах.
вимір


Таблиця 2
m0, кг
mM, кг
mK№1, кг
mK№2, кг







Таблиця 3

d0, мм
dм, мм
dK№1, мм
dK№2, мм

1
вимір
вимір
вимір
вимір

2
вимір
вимір
вимір
вимір

3
вимір
вимір
вимір
вимір

сер.
розрах.
розрах.
розрах.
розрах.


Таблиця 4
№ кільця
J, кг м2
Jt, кг м2

1
розрах.
розрах.

2
розрах.
розрах.


Контрольні запитання
Що називається моментом інерції тіла?
Як визначається момент інерції тіла ?
Вивести формулу для знаходження моменту інерції суцільного диску відносно його ґеометричної осі.
Вивести формулу для розрахунку моменту інерції маятника Максвелла на основі закону збереження механічної енерґії.
Вивести формулу для теоретичного розрахунку моменту інерції маятника Максвелла.
Рекомендована література
Курс фізики / За редакцією І.Є.Лопатинського.
– Львів: Вид. «Бескид Біт», 2002.
2. Трофимова Т.И. Курс физики.– М.: Высшая школа, 1990.
3. Савельев И. В. Курс общей физики, т.1 –М.: Наука, 1982.