Код програми.
/*****************************************************
This program was produced by the
CodeWizardAVR V2.04.4a Advanced
Automatic Program Generator
© Copyright 1998-2009 Pavel Haiduc, HP InfoTech s.r.l.
http://www.hpinfotech.com
Project :
Version :
Date : 01.04.2012
Author : NeVaDa
Company : Microsoft
Comments:
Chip type : ATmega64
Program type : Application
AVR Core Clock frequency: 8,000000 MHz
Memory model : Small
External RAM size : 0
Data Stack size : 1024
*****************************************************/
#include <mega64.h>
#include <delay.h>
// Alphanumeric LCD Module functions
#asm
.equ __lcd_port=0x1B ;PORTA
#endasm
#include <lcd.h>
#ifndef RXB8
#define RXB8 1
#endif
#ifndef TXB8
#define TXB8 0
#endif
#ifndef UPE
#define UPE 2
#endif
#ifndef DOR
#define DOR 3
#endif
#ifndef FE
#define FE 4
#endif
#ifndef UDRE
#define UDRE 5
#endif
#ifndef RXC
#define RXC 7
#endif
#define FRAMING_ERROR (1<<FE)
#define PARITY_ERROR (1<<UPE)
#define DATA_OVERRUN (1<<DOR)
#define DATA_REGISTER_EMPTY (1<<UDRE)
#define RX_COMPLETE (1<<RXC)
// USART0 Receiver buffer
#define RX_BUFFER_SIZE0 8
char rx_buffer0[RX_BUFFER_SIZE0];
#if RX_BUFFER_SIZE0<256
unsigned char rx_wr_index0,rx_rd_index0,rx_counter0;
#else
unsigned int rx_wr_index0,rx_rd_index0,rx_counter0;
#endif
// This flag is set on USART0 Receiver buffer overflow
bit rx_buffer_overflow0;
// USART0 Receiver interrupt service routine
interrupt [USART0_RXC] void usart0_rx_isr(void)
{
char status,data;
status=UCSR0A;
data=UDR0;
if ((status & (FRAMING_ERROR | PARITY_ERROR | DATA_OVERRUN))==0)
{
rx_buffer0[rx_wr_index0]=data;
if (++rx_wr_index0 == RX_BUFFER_SIZE0) rx_wr_index0=0;
if (++rx_counter0 == RX_BUFFER_SIZE0)
{
rx_counter0=0;
rx_buffer_overflow0=1;
};
};
}
#ifndef _DEBUG_TERMINAL_IO_
// Get a character from the USART0 Receiver buffer
#define _ALTERNATE_GETCHAR_
#pragma used+
char getchar(void)
{
char data;
while (rx_counter0==0);
data=rx_buffer0[rx_rd_index0];
if (++rx_rd_index0 == RX_BUFFER_SIZE0) rx_rd_index0=0;
#asm("cli")
--rx_counter0;
#asm("sei")
return data;
}
#pragma used-
#endif
// USART0 Transmitter buffer
#define TX_BUFFER_SIZE0 8
char tx_buffer0[TX_BUFFER_SIZE0];
#if TX_BUFFER_SIZE0<256
unsigned char tx_wr_index0,tx_rd_index0,tx_counter0;
#else
unsigned int tx_wr_index0,tx_rd_index0,tx_counter0;
#endif
// USART0 Transmitter interrupt service routine
interrupt [USART0_TXC] void usart0_tx_isr(void)
{
if (tx_counter0)
{
--tx_counter0;
UDR0=tx_buffer0[tx_rd_index0];
if (++tx_rd_index0 == TX_BUFFER_SIZE0) tx_rd_index0=0;
};
}
#ifndef _DEBUG_TERMINAL_IO_
// Write a character to the USART0 Transmitter buffer
#define _ALTERNATE_PUTCHAR_
#pragma used+
void putchar(char c)
{
while (tx_counter0 == TX_BUFFER_SIZE0);
#asm("cli")
if (tx_counter0 || ((UCSR0A & DATA_REGISTER_EMPTY)==0))
{
tx_buffer0[tx_wr_index0]=c;
if (++tx_wr_index0 == TX_BUFFER_SIZE0) tx_wr_index0=0;
++tx_counter0;
}
else
UDR0=c;
#asm("sei")
}
#pragma used-
#endif
// Standard Input/Output functions
#include <stdio.h>
#define ADC_VREF_TYPE 0x00
// Read the AD conversion result
unsigned int read_adc(unsigned char adc_input)
{
ADMUX=adc_input | (ADC_VREF_TYPE & 0xff);
// Delay needed for the stabilization of the ADC input voltage
delay_us(10);
// Start the AD conversion
ADCSRA|=0x40;
// Wait for the AD conversion to complete
while ((ADCSRA & 0x10)==0);
ADCSRA|=0x10;
return ADCW;
}
void lcd_putfloat(float data, unsigned char row , unsigned char column)
{
char message[5];
unsigned int chuslo;
chuslo = (int) (data);
message[0] = chuslo + 0x30;
lcd_gotoxy(column, row);
lcd_putchar(message[0]);
message[1] = '.';
lcd_gotoxy(column + 1, row);
lcd_putchar(message[1]);
data = data - chuslo;
data = data * 10;
chuslo = (int) (data);
message[2] = chuslo + 0x30;
lcd_gotoxy(column + 2, row);
lcd_putchar(message[2]);
data = data - chuslo;
data = data * 10;
chuslo = (int) (data);
message[3] = chuslo + 0x30;
lcd_gotoxy(column + 3, row);
lcd_putchar(message[3]);
data = data - chuslo;
data = data * 10;
chuslo = (int) (data);
message[4] = chuslo + 0x30;
lcd_gotoxy(column + 4, row);
lcd_putchar(message[4]);
}
// Declare your global variables here
void main(void)
{
// Declare your local variables here
// Input/Output Ports initialization
// Port A initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTA=0x00;
DDRA=0x00;
// Port B initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTB=0x00;
DDRB=0x00;
// Port C initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTC=0x00;
DDRC=0x00;
// Port D initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTD=0x00;
DDRD=0x00;
// Port E initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTE=0x00;
DDRE=0x00;
// Port F initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTF=0x00;
DDRF=0x00;
// Port G initialization
// Func4=In Func3=In Func2=In Func1=In Func0=In
// State4=T State3=T State2=T State1=T State0=T
PORTG=0x00;
DDRG=0x00;
// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
// Mode: Normal top=FFh
// OC0 output: Disconnected
ASSR=0x00;
TCCR0=0x00;
TCNT0=0x00;
OCR0=0x00;
// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: Timer1 Stopped
// Mode: Normal top=FFFFh
// OC1A output: Discon.
// OC1B output: Discon.
// OC1C output: Discon.
// Noise Canceler: Off
// Input Capture on Falling Edge
// Timer1 Overflow Interrupt: Off
// Input Capture Interrupt: Off
// Compare A Match Interrupt: Off
// Compare B Match Interrupt: Off
// Compare C Match Interrupt: Off
TCCR1A=0x00;
TCCR1B=0x00;
TCNT1H=0x00;
TCNT1L=0x00;
ICR1H=0x00;
ICR1L=0x00;
OCR1AH=0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;
OCR1CH=0x00;
OCR1CL=0x00;
// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer2 Stopped
// Mode: Normal top=FFh
// OC2 output: Disconnected
TCCR2=0x00;
TCNT2=0x00;
OCR2=0x00;
// Timer/Counter 3 initialization
// Clock source: System Clock
// Clock value: Timer3 Stopped
// Mode: Normal top=FFFFh
// OC3A output: Discon.
// OC3B output: Discon.
// OC3C output: Discon.
// Noise Canceler: Off
// Input Capture on Falling Edge
// Timer3 Overflow Interrupt: Off
// Input Capture Interrupt: Off
// Compare A Match Interrupt: Off
// Compare B Match Interrupt: Off
// Compare C Match Interrupt: Off
TCCR3A=0x00;
TCCR3B=0x00;
TCNT3H=0x00;
TCNT3L=0x00;
ICR3H=0x00;
ICR3L=0x00;
OCR3AH=0x00;
OCR3AL=0x00;
OCR3BH=0x00;
OCR3BL=0x00;
OCR3CH=0x00;
OCR3CL=0x00;
// External Interrupt(s) initialization
// INT0: Off
// INT1: Off
// INT2: Off
// INT3: Off
// INT4: Off
// INT5: Off
// INT6: Off
// INT7: Off
EICRA=0x00;
EICRB=0x00;
EIMSK=0x00;
// Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=0x00;
ETIMSK=0x00;
// USART0 initialization
// Communication Parameters: 8 Data, 1 Stop, No Parity
// USART0 Receiver: On
// USART0 Transmitter: On
// USART0 Mode: Asynchronous
// USART0 Baud Rate: 9600
UCSR0A=0x00;
UCSR0B=0xD8;
UCSR0C=0x06;
UBRR0H=0x00;
UBRR0L=0x33;
// Analog Comparator initialization
// Analog Comparator: Off
// Analog Comparator Input Capture by Timer/Counter 1: Off
ACSR=0x80;
SFIOR=0x00;
// ADC initialization
// ADC Clock frequency: 1000,000 kHz
// ADC Voltage Reference: AREF pin
//ADMUX=ADC_VREF_TYPE & 0xff;
//ADCSRA=0x83;
ADMUX=ADC_VREF_TYPE & 0xff;
ADCSRA=0x82;
SFIOR&=0xEF;
// LCD module initialization
lcd_init(16);
// Global enable interrupts
#asm("sei")
while (1)
{
unsigned int chus = 0;
float data = 0;
char dani = getchar();
switch (dani)
{
case '1':
lcd_clear();
chus = read_adc(0);
data = chus*2.5/1024;
lcd_gotoxy(0,0);
lcd_puts("Dani z 1 kanalu");
lcd_putfloat(data, 1, 0);
chus = (int)data;
putchar('\n\r');
putchar('O');
putchar('K');
putchar('\n\r');
break;
case '2':
lcd_clear();
chus = read_adc(1);
data = chus*2.5/1024;
lcd_gotoxy(0,0);
lcd_puts("Dani z 2 kanalu");
lcd_putfloat(data, 1, 0);
chus = (int)data;
putchar('\n\r');
putchar('O');
putchar('K');
putchar('\n\r');
break;
case '3':
lcd_clear();
chus = read_adc(2);
data = chus*2.5/1024;
lcd_gotoxy(0,0);
lcd_puts("Dani z 3 kanalu");
lcd_putfloat(data, 1, 0);
chus = (int)data;
putchar('\n\r');
putchar('O');
putchar('K');
putchar('\n\r');
break;
case '4':
lcd_clear();
chus = read_adc(3);
data = chus*2.5/1024;
lcd_gotoxy(0,0);
lcd_puts("Dani z 4 kanalu");
lcd_putfloat(data, 1, 0);
chus = (int)data;
putchar('\n\r');
putchar('O');
putchar('K');
putchar('\n\r');
break;
};
};
}