1. Предметом стат-ки явл. кол-венная сторона соц-эк. явлений и процессов в неразрывной связи с качественной стороной в определ. условиях места и времени. 2. Любое стат. исслед-е проводится в 3 этапа: 1.сбор инф-ции и ее первичная обраб-ка; 2.сводка и групп-ка данных; 3.анализ данных групп-ки и сводки. На кажд. этапе примен-ся свои стат. методы. Сбор инф-ции проводят с пом метода стат. наблюдения. Осн. методом 2го этапа явл. метод стат. группировок. На 3ем этапе исп-ют методы обобщающих пок-лей: метод средних величин, пок-лей вариаций, рядов динамики, индексный метод, выборочный метод, корреляционно-регрессионный анализ (КРА). 3.1ым этапом любого стат. исслед-я явл. стат наблюд-е – это планомерная, систематическая массовая регистрация данных про различные соц-эк явления и процессы. СН проводятся по заранее составл. Плану. План сод-т решения програмно-методологических и организационных вопросов. 4.Стат. группировка – это распредел-е единиц совок-ти на группы по к-л существенным признакам. Признак, по к-му производится группировка наз-ся группировочным (групп-ка предпр-ий по формам собств-ти). 5.Виды группировок: 1.выделение соц-эк. типов – типологическая (групп-ка предпр. по формам собств-ти, по эк. назначению продукта); 2.хар-ка структуры – вид структурный; 3.анализ взаимосвязи пок-лей – вид аналитический. Аналит. группировка – это групп-ка ед-ц совок-ти по признаку-фактору и хар-ка групп средн. величиной результ. пок-ля. Признак-фактор – это фактор, от к-го зависит 2ой фактор, а результативный – это зависимый фактор. По числу группировочных признаков групп-ки бывают простые и комбинированные. Простые – групп-ки, в к-ых группы образованы по одному признаку. Комбинационной наз-ся групп-ка, в к-ой группы взяты по одному признаку, распредел. на подгруппы по другому. 6.Ряд распределения.— это ряд чисел, в к-ый представл. собой распред-е единиц совок-ти по 1-му элементу. Его элементами явл-ся все варианты и частоты (частость). Варианты – это отдельн. значения группировочного признака. Частоты – это числа, показывающие ск-ко раз встречаются те или иные варианты. Если число единиц совок-ти выражено в % к итогу – называют их не частоты, а частости. Виды рядов распредел-я: атрибутивный и вариационный. Атриб-ным наз-ся ряд распр-я, построенный по атриб. признаку (выраж. словесно). Если в основе ряда распред-я лежит кол-венный признак,то получаем вариационный ряд. В завис-ти от признака вариац. ряд м.б. дискретным или непрерывным. 7.Виды табл. по построен. подлеж. Кажд. таблица подобно предложению имеет подлежащее и сказуемое. Подлежащее – это стат. совок-ть, о к-ой говорится в табл. Сказуемое – это числов. знач-я пок-лей, характериз. подлежащее. Вид табл. определяется по построению подлежащего. Различают простые, групповые и комбинационные таблицы. В простой таблице подлежащее содержит перечень к-л. объектов, тер-рий или периодов времени. В соотв-ии с этим прост. табл. м.б. перечневые, тер-риальные, хронологические. В групповой таблице подлежащее сод-т группировку по одному признаку (табл.2 и 4). В комбинац. таблицах в подлежащем приводятся группы единиц, образованных по одному признаку с последующим подразделением групп на подгруппы по др. признаку 16.Абсол. стат. вел-ны (АВ) и их виды и ед-цы измерения. Результаты стат. наблюдения представл. прежде всего в виде абсол. чисел. АО выраж. либо общее число единиц совок-ти (число предр-тий, рабочих), либо объем признака у этих единиц (выпуск прод-ции, кол-во станков, уровень зар. платы). Абсол. вел-ны бывают индивидуальные и суммарные. Индивид. выражают объем признака у отдельных единиц (зар.плата 1 рабочего, надой 1 коровы). Суммарные выраж. итоговое значение признака по определ. части совок-ти, т.е. получаются путем суммир-я индивидуальных (фонд з/п всех рабочих, общий надой молока).АВ – именованные числа, т.е. кажд. абсол. вел-на имеет свои единицы измерения. Виды измер-я АВ: 1)натур-ные; 2)трудовые; 3)стоимостные. К натур. ед-цам измер-я относят: меры длины, веса, площади; штуки (пр-во телевизоров), события, случаи; комбинированные – их получают путем перемножения или деления к-л. 2х величин (кВт/ч, т/км, км/ч). Среди натур. единиц измерения выделяют условно-натуральные.Их применяют в тех случаях, когда в неск. видах прод-ции есть ч-л. общее, но существуют и различия и суммировать эти вел-ны непоср-но нельзя(различные виды топлива). Для получения суммы этих вел-н различные виды прод-ции пересч-вают в условно-натуральные с пом. коэф-та пересчета. Трудовые единицы измер-я исп-ся для измерения затрат труда на произв-во прод-ции и для изучения исп-я труд. рес-сов (чел-час, чел-дни, кол-во рабочих). Стоим-ные единицы измерения дают возможн-ть обобщить и сравнить разноименные показ-ли (грн., руб., долл.). АВ не дают возм-ти изучить структуру явления, соотнош-е его отдельн. частей. Эти и др. задачи реш-ся с помощью построения относит. величин. 17.Относит. вел-ны.Формы их выражения. ОВ – это числ-ая мера соотношения 2х др. величин. В общем виде относит. вел-ну можно записать: ОВ = сравниваемая вел-на / базисная вел-на (база сравнения). Формы выражения ОВ: 1.коэф-т: ОВ предст-ся в форме коэф-та, если база сравнения приним-ся за единицу (в 2000 г. валов. Сбор зерна в Од.обл. превысил валов. сбор зерна в Киевск. обл. в 1,105 раза ); 2.процент: ОВ предст-ся в форме %, если база сравнения прин-ся за 100 % (Вал. сбор зерна в Киевск.обл. составил 90,5 % Од.обл.); 3.промилле: ОВ выражен в форме промилле, если база сравнения принята за 1000 (В 2000 г. на кажд. 1000 чел-к среднего населения Укр зарегистрир-но 5,5 браков и 4 развода). 18.Виды относит.вел-н. Взаимосвязь относит. вел-н. ОВ – это числовая мера соотношения 2х др. величин. В общем виде относит. вел-ну можно записать: ОВ = сравниваемая вел-на / базисная вел-на (база сравнения). Виды ОВ: 1.ОВД(динамики или темп роста фактич.) хар-ет изменение уровня явления во времени. ОВД = Тр = У1 / У0 =отчетный ур-нь / базисный ур-нь. 2. ОВПЗ(планового задания или темп роста плановый) = Трп = Уп / У0 = планов. ур-нь отчетн. периода / баз-ный уровень. 3.ОВВП(выполнения плана) = СВП(степень выполнения плана) = У1 / Уп = отчетный уровень / плановый уровень. 4. ОВС(структуры) характеризует доли или удельные веса отдельн. частей совок-ти во всей совок-ти. ОВС = часть / целое. ОВС обычно представл-ся в форме %. 5.ОВК(координации) хар-ет соотнош-е отдельн. частей совок-ти к одной из них, принятой за базу сравнения. ОВК = часть совок-ти / др. часть совок-ти. Напр., соотн-е числ-ти мужчин и женщин в регионе. ОВК показ-ет на ск-ко % одна часть совок-ти больше другой , либо ск-ко единиц одной части приходится на 1,10,100,… единиц др. части. 6. ОВСр(сравнения) хар-ся отнош-е одноименных показ-лей, разных объектов или тер-рий, взятых за один и тот же период или момент времени (напр., сравнение числа женщин в Од. и Харьк. областях). ОВСр = ур-нь в регионе А/ур-нь в регионе Б. 7. ОВИ хар-ет степень распростр-я, развития явления в определ. среде. Особ-ть ОВИ – это соотнош-е разноименных пок-лей (напр., произво-сть труда, трудоемкость, фондоотдача, фондоемкость) ОВД=ОВПЗ * ОВВП – взаимосвязь 19.Понят и знач-е средн. вел-н в стат-ке Стат. совок-ть сост. из массы отдельн. единиц, к-ые облад. индивид. особ-тями. Поэтому отлич. друг от друга по размеру кол-венных признаков. Напр., рабочие предпр-я, имея различн. квалиф. Получ. разн. з/п. Вместе с тем, стат. совок-ть облад. рядом общих типичных черт присущих кажд. единице. Поэтому для привед. совок-ти рабочих можно к примеру исчислить средн. з/п 1 рабочего. Эта вел-на не будет относ-ся к отдельн. ед-цам сов-ти, она хар-ет всю совок-ть вцелом. Средн. вел-на – это обобщ. пок-ль, к-ый выраж. типичный размер варьир. признака в расч-е на единицу стат. сов-ти. 20, 21. Виды и формы ср.вел-н (ср.арифм., ср.гармонич.) Осн. видом ср.вел-н явл. средн. арифм., она имеет 2 формы: простая (х¯ = ?х /n, где х – варианты опред-мого признака, n-общ.число ед-ц сов-ти) и взвешенная (х¯ = ?хf / ?f, где n-общ.число ед-ц сов-ти, f-частоты(частости), веса).Ср.арифм. простая примен-ся для первичн. несгруппиров.данных или для сгруппир. данных с разн. частотами(весами). Взвешенная форма применяется для сгруппированных данных. Средн.гармонич.: простая(х¯ = n / ?1/х,) и взвешенная(х¯ = ?хf / ?хf/х =?F / ?F/х, где F- произв-е xf). 22. Сущность и определение моды. Модой в стат-ке наз.вариант, имеющий наиб.частоту. Исп-ся этот пок-ль для определ-я более распростр.размера обуви, одежды и т.д. В дискретн. вариац.ряду расчет моды сложн-ти не вызывает. Тарифн.разряд Число рабочих
1 3
2 9
3 16
4 13
5 10
ИТОГО: 58
Мо = 3 разряд Расчет моды для интерв.вариац.ряда с равн. интервалами: Мо=Хо+h(fMo- fMo-1)/(fMo- fMo-1)+(fMo- fMo+1) где Хо – нижн.граница модальн.интервала, h-ширина интервала fMo-1,fMo ,fMo+1 – соотв-но частоты предмод-го, мод-го, послемод-ого инт-лов Модальн.интервал – инт-ал с наиб. част-й 23. Сущность и опред-ние медианы (М). М.- наз-ся вариант, распол.в середине ранжиров.ряда и делящий сумму частот пополам. М. делит ряд на 2 равн.части таким образом, что по обе стор.от неё нах-ся одинак.кол-во ед-ц совок-ти, при этом у 1 половины зн-е признака меньше медианы, а у др.больше. Расчет М. для дискретн. вариац. ряда: - опред-ся накопленные(нарастающие) частоты; как только накопл.частота окаж-ся больше или равной полусумме частот, соотв.вариант будет явл-ся медианой. Расчет М. для интерв.вариац.ряда с равн.интервалами: - опр-ем интервал, в к-ом нах-ся медиана – медианный интервал, к-ый хар-ся тем, что его накопл.частота впервыеравна или больше полусуммы частот: Ме=Хо+h(?f/2 -SMe-1)/fMе, где Хо – нижн.граница медианного интервала h – ширина интервала; ?f/2 –полусумма частот; 29. Общ. понятие об индексах и индексный анализ. Виды индексов. Индексированые величины. Индекс – это относит. пок-ль, хар-щий соотн-е уровней явления во времени, но по сравнению с планом и в пространстве. В соотв-ии с этим определением к индексам относ. след. относ. величины: ОВД, ОВПЗ, ОВВП, ОВСр. В узком смысле слова под индексом понимают все вышеперечисл. отн. вел-ны, но построенные особым образом – в увязке с одним или неск. др. пок-лями. Виды индексов по охвату эл-тов совокупности: индивид (i) и сводные (I). Индивид. индекс хар-ет соотн-е ур-ней только 1 эл-та совок-ти. Сводный индекс хар-ет соотношение уровней сложн. явления вцелом, т.е. соотн-е неск. эл-тов совок-ти. Показатель, соотн-е к-го хар-ет индекс наз-ся индексируемым. Индексируемые пок-ли м.б. объемными (кол-венными) и качественными (интенсивными). Объемн. пок-ль хар-ет общ. объем (размер) признака (выпуск продукции, затраты времени, ст-ть фондов предпр.). Кач-венные пок-ли хар-ют объем признаков в расчете на ед-цу совок-ти (себест-ть ед-цы пр-ции, выраб-ка на 1 рабочего). 24. Сущн-ть вариации и ее показатели. Вариация – это изменение признака у единиц совокупности. Для колич-ной оценки вариации или колеблемости признака используются след. пок-ли: 1.размах вариации хар-ет амплитуду колебаний R=Xmax – Xmin, где Xmax, Xmin – соответственно max и min значения признака. Преимущество показателя – легкость в применении, недостаток – его аеличина зависит только от крайних точек. 2. среднее линейное отклонение (Л) показ. средн. отклонение отдельн. вариантов от их средней величины и рассчит-ся как средн. арифметич. Для несгруппиров. данных исп-ют ср. арифм. простую форму, для сгруппиров. – взвешенную. Простая форма: Л=?¦х - х? ¦/ n , где х – отдельное значение признака, х? - среднее значение признака, n – число единиц совок-ти. Взвешенная форма: Л=?(х - х? )f/ ?f , где х – отдельное значение признака, х? - среднее значение признака, f – частоты (веса). 3.дисперсия показ. средние квадратич. отклонения отдельных вариантов от их средн. величины. Это теоретич. вел-на, не имеет единиц измерения, используется для расчета средн. квадратич. отклонения. Дисперсия имеет 2 формы: простую (для несгруппир. данных). ? = v?(х - х? )2 / n, где х – отдельное значение признака, х? - среднее значение признака, n – число единиц совок-ти. - и взвешенную (для сгруппир. данных): ? = v ?(х - х? )2 f / ?f ,где х – отдельное значение признака, х? - среднее значение признака, f – частоты (веса). 5.коэффициент вариации – это проц-ное отн-ение средн. лин-ого или ср. квадратич. откло-ния к средн. величине признака. Vл = Л / х? * 100 (линейн.) V? = ? / х? * 100 (квадратич.) 25.Понят. и виды рядов динамики, их сост. элем-ты и правила построения. Ряд динамики – это ряд чисел, распол. в хронол. послед-ти, к-ые хар-зуют измен-е явления во времени. Ряд динамики всегда сост. из 2х элементов: 1.мом-тов времени (калоендарн. дат) или интервалов времени (год, квартал, месяц); 2.уровней ряда динамики. Виды рядов динамики зависят от: 1.хар-ра пок-ля, являющегося уровнем ряда : *ряд динамики абсол. вел-н; *ряд дин-ки ср. вел-н; *ряд дин-ки относ. вел-н; 2. времени, к к-му относ. стат. данные: *интервальные; *моментные. Пок-ли интерв. рядов дин-ки хар-ют итоги к-л. процесса за определ. Период времени (год, квартал, месяц и т.д.). Например, товарооборот магазина за квартал. Уровни интерв. ряда дин-ки можно суммировать (ВВП 2001 + ВВП2002 = ВВП за 2 года) В моментном ряду динамики пок-ли его характеризуют наличие ч-л. на определ. момент времени (число родившихся на начало года). Суммировать пок-ли в моментном ряду дин-ки экон. смысла не имеет. Осн. принцип построения рядов дин-ки заключ. в том, что уровни ряда дин-ки должны быть между собой сопоставимы (по ед-цам измер-я, по времени, по тер-рии, по кругу охватыв-ых объектов). 28. Ср-ние пок-ли анал-а дин-ых рядов. Средн. абсол. темп роста показ-ет на ск-ко единиц увеличивался или уменьшался уровень по сравнению с базисным в среднем за единицу времени: ?? = (Уi – Уi-t) / t = ?б / t = ??ц / t , Средний темп роста показывает (если выражен в форме коэф-та) во ск-ко раз увелич-ся уровень по сравнению с базисн. в средн. за единицу времени. Тр? =t vУi / Уi-t = t v Трбаз = = t v Тр 1 * Тр 1 *…* Тр t (средняя геометрическая) Темп прироста средний показывает (если выражен в %) на ск-ко % увелич-ся или уменьш-ся ур-нь в отч. по сравнению с базисн. в среднем за единицу времени. Тпр? (%)=Тр? (%) – 100 26.Базисные и цепные пок-ли анализа рядов дин-ки и их взаимосвязь. Пок-ли дин-ки рассчит-ся на цепной и базисной основе. В цепных пок-лях дин-ки кажд. последующий уровень сравнивается с предыдущим, а в базисных – кажд. ур-нь сравнив-ся с одним, принятым за базу сравнения. Абсолютный прирост хар-ет абсол. скорость роста и показ-ет на ск-ко ед-ц увел-ся или уменьшается уровень за период: ?баз. = Уi – Уi-t ?цепн. = Уi – Уi-1, где Уi-1 – предыдущий ур-нь, Уi – сравниваемый уровень, Уi-t – базисный ур-нь, t – длина периода. Взаимосвязь между баз. и цепн. абсол. приростами: сумма последоват. цепных приростов дает прирост за весь период. Темп роста (Тр) показывает во ск-ко раз увел-ся уровень в отч. периоде по сравнению с базисным (предыдущим) или какую часть базисного (предыдущего) составляет. Тр баз. = Уi / Уi-t Тр цепн. = Уi / Уi-1 Взаимосвязь между цепн. и базисн. темпами роста: произвед-е последовательн. темпов роста зает темп роста за весь период, т.е. соответствующий базисный темп роста. Темп прироста хар-ет относ. вел-ну прироста и выраж. в %, показ-ет на ск-ко % увел-ся или уменьш-ся уровень по сравнению с базисным или предыдущим. Тпр(%) = Тр(%) – 100 – ф-ла соотв-ет и цепным и базисным темпам прироста. Абсол. содерж-е 1 % прироста показ-ет ск-ко абсол. единиц соответствует кажд. % прироста. А = Уi-t / 100. 27. Ср-ие уровни рядов дин-ки, их расчет в интерв. и мом-ных рядах дин-ки. Ср. ур-нь интерв. ряда дин-ки (за период) вычисляется по формуле средней арифметической простой: У? = ?У/t , где ?У – сумма уровней за весь период, t – длина периода. Ср. уровень моментного ряда динамики зависит от характера исходной инф-ции: 1.имеется полная исчерпывающая информ-я обо всех измен-ях уровня ряда. Примен-ся ф-ла средн. арифм. взвеш.: У? = ?У/?t, У – уровни, остающиеся без изменения на протяж. времени t. 2.информ-я об измен. уровня ряда дин-ки неполная: а) имеются данные только на начало и на конец периода У? =(Ун +Ук) / 2 б) известны ур-ни на начало и конец периода, а также на некот. промежут. даты, периоды времени между к-ми не равны – применяется ср. арифмет. взвеш. модифицированная: У? = ?Уi? *ti /?ti , где ?Уi? -ср. ур-нь в кажд.пром-ке времени ti. в) имеются уровни на начало и конец периода, а также на некот. промежуточн. даты, интервалы времени между которыми равны – применяется формула средней хронологической взвешенной: У?=(1/2У1 + У2 +…+Уn-1 + 1/2Уn) / (n-1) где n –число уровней, n-1 – число прмежутков. 30.Индивид. индексы и их взаимосвязи. Индивид. индексы м.б. представл. как индексы планов. задания, динамики и выполн-я плана. Напр., планом предусм. увеличить объем продаж на 0,5%, фактич-ки объем продаж увел-ся на 0,7%, план перевыполнен на 0,2% i Qдин = Q1 / Qo = 100,7% или 1,007 i Qплан. зад. = Qпл. / Qбаз = 100,5% или 1,005 i Qвып. пл. = Q1 / Qпл. = 100,2% или 1,002 Взаимосвязи индексов: 1. произведение индексов планов. задания и выполнения плана дает индекс динамики i план. зад i вып. пл. = i дин. 2. произвед-е цепн. индексов равно базисному индексу Q1/ Q0 * Q2 / Q1 * Q3 / Q2 = Q3/ Q0 3. Если произв-е 2х или неск. пок-лей предст. собой новый пок-ль, имеющий реальный эк-кий смысл, то произвед-е индексов сомножителей равно индексу нового показателя. Q = q T > i Q = i q i T PQ = P Q > i PQ = i P i Q 32. Построение сводн. индексов кач-веных пок-лей в агрегатной форме. IР = ? Р1Q 1 / ? Р0 Q 1 В укр. стат-ке в сводн. индексе кач-венного пок-ля веса фиксир-ся на отчетн. уровне. Индекс представлены в агрегатной форме, к-ая явл-ся основной формой сводн. индекса. Агрегатная форма явл. осн. формой сводного индекса, т.к. в ней ясен смысл числителя и знаменателя. IР = ? Р1Q 1 / ? Р0 Q 1 Здесь в числителе – фактич. вел-на, к-ая показ-ет общ. ст-ть в отч. периоде, а в знаменателе – условн. вел-на, к-ая показ-ет какой была бы общ. ст-ть в отч. периоде, если бы цены оставались на уровне базисного периода. На основании индекса цен можно определить на ск-ко грн. уменьшилась общ. ст-ть только за счет измен-я цен ??PQ(p) = ?Р1Q1 - ?Р0 Q1 это разность между числителем и знаменателем индекса цены. 31. Построение сводных индексов объемных пок-лей в агрегатной форме. Агрегатная форма явл. осн. формой сводного индекса, т.к. в ней ясен смысл числителя и знаменателя. IQ = ? Q1P 0 / ? Q0 P0 - агрегатн. форма индекса физ. объема. В укр. стат-ке в индексах кол-венных пок-лей веса фиксир-ся на уровне базисного периода. Здесь в числителе – условная вел-на, к-ая показ-ет какая была бы ст-сть отчетного периода в ценах баз-ного, а в знаменателе – фактич. вел-на, к-ая показ-ет общ. ст-ть в базисного периода. ??PQ(Q) = ?Q1 Р0 - ? Q0 Р0 Разность между числителем и знаменателем индекса физич. объема показ-ет абсол. прирост стоим-ти только за счет изменения Q. Индекс стоим-ти: IPQ = ?Р1Q1 / ?Р0 Q0 Разность между числ-лем и знаменателем сводн. индекса стоим-ти показ-ет абсол. прирост стоим-ти: ??PQ = ?Р1Q1 - ?Р0 Q0 – прирост PQ за счет Р ??PQ (Р) + ??PQ (Q) = ??PQ 33. Средневзвешенные индексы: средн. арифмет. и средн. гармонический. Для преобразования агрегатн. формы индекса в среднюю - либо в числ-е, либо в знам-ле агрег. индекса индексируемую вел-ну выражают через ее индивид. индекс. Замена производится в той части индекса, где распол. условная вел-на. Если замена произведена в числителе – получаем среднюю арифметическую взвешенную форму сводного индекса: IQ = ?Q1 Р0 / ?Q0 Р0 =? iQ Q0 Р0 / ?Q0 Р0 А если в знаменателе – получаем среднюю гармоническую взвешенную форму сводного индекса: IР =? Р1Q 1 / ? Р0 Q 1=?Р1Q 1 / ?(Р1 Q 1)/iP 34. Разложение общего прироста результативного пок-ля по факторам (в абсолютном выражении). Пусть результ. Пок-ль Q-вып-к прод-ии. Представим его в виде «*» 2х сомножителей –АТ и затраты времени (Q=qT) и будем расс-ть эти сомнож-ли, факторы, влияющ. на изм-ие общего выпуска. Причем ?Q=?Q(q)+?Q(T); ?Q=Q1-Q0, в т.ч. ?Q(T)=(T1-T0)q0=T1q0-T0q0; ?Q(q)=(q1-q0)T1=q1T1-q0T1. Прирост результ. пок-я за счет кол-тв. ф-ра=прирост самого кол-тв. ф-ра, умнож-у на кач-тв. ф-р в баз. периоде. Прирост результативн-го пок-ля за счет кач-тв. ф-ра=проирост самого кач-тв. ф-ра, умнож-му на кол-тв. ф-р в отч. периоде. ?Q(T)=(T1-T0)q0=T1q0-T0q0 Пусть ст-ть прод-ии-это цена*кол-во. Определ. ?PQ=P1Q1-P0Q0 ?PQ(P)=(P1-P0)Q1 ?PQ(Q)=(Q1-Q0)P0 35. Разлож-е общ. прироста рез-тат. пок-ля по факт-м (в относит. выр-ии). ?Q(q)=q1T1=q0T1=Q0(q1T1/Q0-q0T1/Q0)=Q0(iQ-iT) ?Q(T)=T1q0-T0q0=Q0(T1q0/Q0-T0q0/Q0)=Q0(T1/T0-1)=Q0(iT-1) При индекс. Сп-бе уельного мет-а абс. Прирост результ-го показ-ля за счет колич. Ф-ра=произв-ю результ-го пок-ля в баз. периоде на относит. прирост кол-го ф-ра. Абс. пр-ст за счет кач-го ф-ра=произв. баз. уровня результ-го пок-ля на разность индексов числ-ля и знаменат. расч. формулы этого кач-го пок-ля. 36. Индексный метод анализа динамики средн. уровня качеств. пок-ля: индексы перем., фиксир. состава и структурных сдвигов. На разл. участках, на разл. П. может произ-ся однолин-ая продукция. В этом случае можно опред-ть по группе этих П-й себ-сть ед-ы прод-ии, ср. цену, ср. труд. ст-сть. Пример: ср. себест-ть ед-ы прод-ии с помощью символики индивидуального мет-а можно записать: Z?=Общ. Себ-ть по всем П-ям./Общ. V прод-ии на П-ях=?ZQ/?Q=?Z(Q/?Q) Q/?Q=d=> Z?=?Zd, где Z-себ-ть ед-ы прод-иии на отд-ых П-ях, d-доля отд-ых П-ий в общ. выпуске прод-ии. Стат. Задача опред. как в отч. периоде изм-ась ср.себ-ть ед-ы прод-ии в целом, а также за счет каждого из назв-ых ф-ов. IфсZ?=Z?1/Z?’=(?Z1Q1/?Q1)/(?Z0Q0/?Q0) IссZ?=Z?’+Z?0=(?Z0Q1/Q1)/(?Z0Q0/?Q0) IccZ?=(?Z1Q1/?Q1)/(?Z0Q0/Q0) Пок-ет как в отч. периоде по сравн. С баз. изм-сь ср. себ-сть ед-цы прод-ии только за счет изм-ия себест-ти ед-ы на отд. П-ях и за счет изм-ия стуктуры выпуска продукции. 34. Разложение общего прироста результативного пок-ля по факторам (в абсолютном выражении). Пусть результ. Пок-ль Q-вып-к прод-ии. Представим его в виде «*» 2х сомножителей –АТ и затраты времени (Q=qT) и будем расс-ть эти сомнож-ли, факторы, влияющ. на изм-ие общего выпуска. Причем ?Q=?Q(q)+?Q(T); ?Q=Q1-Q0, в т.ч. ?Q(T)=(T1-T0)q0=T1q0-T0q0; ?Q(q)=(q1-q0)T1=q1T1-q0T1. Прирост результ. пок-я за счет кол-тв. ф-ра=прирост самого кол-тв. ф-ра, умнож-у на кач-тв. ф-р в баз. периоде. Прирост результативн-го пок-ля за счет кач-тв. ф-ра=проирост самого кач-тв. ф-ра, умнож-му на кол-тв. ф-р в отч. периоде. ?Q(T)=(T1-T0)q0=T1q0-T0q0 Пусть ст-ть прод-ии-это цена*кол-во. Определ. ?PQ=P1Q1-P0Q0 ?PQ(P)=(P1-P0)Q1 ?PQ(Q)=(Q1-Q0)P0 35. Разлож-е общ. прироста рез-тат. пок-ля по факт-м (в относит. выр-ии). ?Q(q)=q1T1=q0T1=Q0(q1T1/Q0-q0T1/Q0)=Q0(iQ-iT) ?Q(T)=T1q0-T0q0=Q0(T1q0/Q0-T0q0/Q0)=Q0(T1/T0-1)=Q0(iT-1) При индекс. Сп-бе уельного мет-а абс. Прирост результ-го показ-ля за счет колич. Ф-ра=произв-ю результ-го пок-ля в баз. периоде на относит. прирост кол-го ф-ра. Абс. пр-ст за счет кач-го ф-ра=произв. баз. уровня результ-го пок-ля на разность индексов числ-ля и знаменат. расч. формулы этого кач-го пок-ля. 36. Индексный метод анализа динамики средн. уровня качеств. пок-ля: индексы перем., фиксир. состава и структурных сдвигов. На разл. участках, на разл. П. может произ-ся однолин-ая продукция. В этом случае можно опред-ть по группе этих П-й себ-сть ед-ы прод-ии, ср. цену, ср. труд. ст-сть. Пример: ср. себест-ть ед-ы прод-ии с помощью символики индивидуального мет-а можно записать: Z?=Общ. Себ-ть по всем П-ям./Общ. V прод-ии на П-ях=?ZQ/?Q=?Z(Q/?Q) Q/?Q=d=> Z?=?Zd, где Z-себ-ть ед-ы прод-иии на отд-ых П-ях, d-доля отд-ых П-ий в общ. выпуске прод-ии. Стат. Задача опред. как в отч. периоде изм-ась ср.себ-ть ед-ы прод-ии в целом, а также за счет каждого из назв-ых ф-ов. IфсZ?=Z?1/Z?’=(?Z1Q1/?Q1)/(?Z0Q0/?Q0) IссZ?=Z?’+Z?0=(?Z0Q1/Q1)/(?Z0Q0/?Q0) IccZ?=(?Z1Q1/?Q1)/(?Z0Q0/Q0) Пок-ет как в отч. периоде по сравн. С баз. изм-сь ср. себ-сть ед-цы прод-ии только за счет изм-ия себест-ти ед-ы на отд. П-ях и за счет изм-ия стуктуры выпуска продукции. 34. Разложение общего прироста результативного пок-ля по факторам (в абсолютном выражении). Пусть результ. Пок-ль Q-вып-к прод-ии. Представим его в виде «*» 2х сомножителей –АТ и затраты времени (Q=qT) и будем расс-ть эти сомнож-ли, факторы, влияющ. на изм-ие общего выпуска. Причем ?Q=?Q(q)+?Q(T); ?Q=Q1-Q0, в т.ч. ?Q(T)=(T1-T0)q0=T1q0-T0q0; ?Q(q)=(q1-q0)T1=q1T1-q0T1. Прирост результ. пок-я за счет кол-тв. ф-ра=прирост самого кол-тв. ф-ра, умнож-у на кач-тв. ф-р в баз. периоде. Прирост результативн-го пок-ля за счет кач-тв. ф-ра=проирост самого кач-тв. ф-ра, умнож-му на кол-тв. ф-р в отч. периоде. ?Q(T)=(T1-T0)q0=T1q0-T0q0 Пусть ст-ть прод-ии-это цена*кол-во. Определ. ?PQ=P1Q1-P0Q0 ?PQ(P)=(P1-P0)Q1 ?PQ(Q)=(Q1-Q0)P0 35. Разлож-е общ. прироста рез-тат. пок-ля по факт-м (в относит. выр-ии). ?Q(q)=q1T1=q0T1=Q0(q1T1/Q0-q0T1/Q0)=Q0(iQ-iT) ?Q(T)=T1q0-T0q0=Q0(T1q0/Q0-T0q0/Q0)=Q0(T1/T0-1)=Q0(iT-1) При индекс. Сп-бе уельного мет-а абс. Прирост результ-го показ-ля за счет колич. Ф-ра=произв-ю результ-го пок-ля в баз. периоде на относит. прирост кол-го ф-ра. Абс. пр-ст за счет кач-го ф-ра=произв. баз. уровня результ-го пок-ля на разность индексов числ-ля и знаменат. расч. формулы этого кач-го пок-ля. 36. Индексный метод анализа динамики средн. уровня качеств. пок-ля: индексы перем., фиксир. состава и структурных сдвигов. На разл. участках, на разл. П. может произ-ся однолин-ая продукция. В этом случае можно опред-ть по группе этих П-й себ-сть ед-ы прод-ии, ср. цену, ср. труд. ст-сть. Пример: ср. себест-ть ед-ы прод-ии с помощью символики индивидуального мет-а можно записать: Z?=Общ. Себ-ть по всем П-ям./Общ. V прод-ии на П-ях=?ZQ/?Q=?Z(Q/?Q) Q/?Q=d=> Z?=?Zd, где Z-себ-ть ед-ы прод-иии на отд-ых П-ях, d-доля отд-ых П-ий в общ. выпуске прод-ии. Стат. Задача опред. как в отч. периоде изм-ась ср.себ-ть ед-ы прод-ии в целом, а также за счет каждого из назв-ых ф-ов. IфсZ?=Z?1/Z?’=(?Z1Q1/?Q1)/(?Z0Q0/?Q0) IссZ?=Z?’+Z?0=(?Z0Q1/Q1)/(?Z0Q0/?Q0) IccZ?=(?Z1Q1/?Q1)/(?Z0Q0/Q0) Пок-ет как в отч. периоде по сравн. С баз. изм-сь ср. себ-сть ед-цы прод-ии только за счет изм-ия себест-ти ед-ы на отд. П-ях и за счет изм-ия стуктуры выпуска продукции. СПИСОК ВОПРОСОВ 1. Предмет стат-ки 2. Этапы стат. исслед-я 3. Стат наблюд-е 4. Стат. группировка 5. Виды группировок 6. Ряд распределения 7. Виды табл. по построен. подлеж. 16.Абсол. стат. вел-ны и их виды и ед-цы измерения. 17.Относит. вел-ны.Формы их выражения. 18.Виды относит.вел-н. Взаимосвязь относит. вел-н. 19. Понят и знач-е средн. вел-н в стат-ке 20, 21. Виды и формы ср.вел-н (ср.арифм., ср.гармонич.) 22. Сущность и определение моды. 23. Сущность и определение медианы. 24. Сущн-ть вариации и ее показатели. 25.Понят. и виды рядов динамики, их сост. элем-ты и правила построения. 26.Базисные и цепные пок-ли анализа рядов дин-ки и их взаимосвязь. 27. Ср-ие уровни рядов дин-ки, их расчет в интерв. и моментных рядах дин-ки. 28. Ср-=ие пок-ли анализа дин-ных рядов. 29. Общ. понятие об индексах и индексный анализ. Виды индексов. Индексированые величины. 30.Индивид. индексы и их взаимосвязи. 31. Построение сводных индексов объемных пок-лей в агрегатной форме. 32. Построение сводн. индексов кач-веных пок-лей в агрегатной форме. 33. Средневзвешенные индексы: средн. арифмет. и средн. гармонический. 34. Разложение общего прироста результативного пок-ля по факторам (в абсолютном выражении). 35. Разлож-е общ. прироста результат. пок-ля по факторам(в относит. выр-ии) 36. Индексный метод анализа динамики средн. уровня качеств. пок-ля: индексы перем., фиксир. состава и структурных сдвигов. СПИСОК ВОПРОСОВ 1. Предмет стат-ки 2. Этапы стат. исслед-я 3. Стат наблюд-е 4. Стат. группировка 5. Виды группировок 6. Ряд распределения 7. Виды табл. по построен. подлеж. 16.Абсол. стат. вел-ны и их виды и ед-цы измерения. 17.Относит. вел-ны.Формы их выражения. 18.Виды относит.вел-н. Взаимосвязь относит. вел-н. 19. Понят и знач-е средн. вел-н в стат-ке 20, 21. Виды и формы ср.вел-н (ср.арифм., ср.гармонич.) 22. Сущность и определение моды. 23. Сущность и определение медианы. 24. Сущн-ть вариации и ее показатели. 25.Понят. и виды рядов динамики, их сост. элем-ты и правила построения. 26.Базисные и цепные пок-ли анализа рядов дин-ки и их взаимосвязь. 27. Ср-ие уровни рядов дин-ки, их расчет в интерв. и моментных рядах дин-ки. 28. Ср-=ие пок-ли анализа дин-ных рядов. 29. Общ. понятие об индексах и индексный анализ. Виды индексов. Индексированые величины. 30.Индивид. индексы и их взаимосвязи. 31. Построение сводных индексов объемных пок-лей в агрегатной форме. 32. Построение сводн. индексов кач-веных пок-лей в агрегатной форме. 33. Средневзвешенные индексы: средн. арифмет. и средн. гармонический. 34. Разложение общего прироста результативного пок-ля по факторам (в абсолютном выражении). 35. Разлож-е общ. прироста результат. пок-ля по факторам(в относит. выр-ии) 36. Индексный метод анализа динамики средн. уровня качеств. пок-ля: индексы перем., фиксир. состава и структурных сдвигов. СПИСОК ВОПРОСОВ 1. Предмет стат-ки 2. Этапы стат. исслед-я 3. Стат наблюд-е 4. Стат. группировка 5. Виды группировок 6. Ряд распределения 7. Виды табл. по построен. подлеж. 16.Абсол. стат. вел-ны и их виды и ед-цы измерения. 17.Относит. вел-ны.Формы их выражения. 18.Виды относит.вел-н. Взаимосвязь относит. вел-н. 19. Понят и знач-е средн. вел-н в стат-ке 20, 21. Виды и формы ср.вел-н (ср.арифм., ср.гармонич.) 22. Сущность и определение моды. 23. Сущность и определение медианы. 24. Сущн-ть вариации и ее показатели. 25.Понят. и виды рядов динамики, их сост. элем-ты и правила построения. 26.Базисные и цепные пок-ли анализа рядов дин-ки и их взаимосвязь. 27. Ср-ие уровни рядов дин-ки, их расчет в интерв. и моментных рядах дин-ки. 28. Ср-=ие пок-ли анализа дин-ных рядов. 29. Общ. понятие об индексах и индексный анализ. Виды индексов. Индексированые величины. 30.Индивид. индексы и их взаимосвязи. 31. Построение сводных индексов объемных пок-лей в агрегатной форме. 32. Построение сводн. индексов кач-веных пок-лей в агрегатной форме. 33. Средневзвешенные индексы: средн. арифмет. и средн. гармонический. 34. Разложение общего прироста результативного пок-ля по факторам (в абсолютном выражении). 35. Разлож-е общ. прироста результат. пок-ля по факторам(в относит. выр-ии) 36. Индексный метод анализа динамики средн. уровня качеств. пок-ля: индексы перем., фиксир. состава и структурных сдвигов.