Завдання 1.
Розрахувати місячну заробітну плату кожного робітника заводу, використовуючи тарифну сітку (таб.2). Система оплати праці – погодинно – преміальна. Розмір премії в І цеху – 30%, ІІ цеху – 40%. Дані записати в таблицю вихідних даних (таб.1). Коефіцієнт 2,4.
Таблиця 2.1
розраховуємо заробітну плату працівників І цеху з врахуванням премії в розмірі 30% від заробітної плати по кожному з розрядів, і коефіцієнта 1,1:
I 300,5*1,3*2,4=937,6 грн.
II 310,1*1,3*2,4=967,5 грн.
III 403*1,3*2,4=1257,4 грн.
IV 485,5*1,3*2,4=1514,8 грн.
V 527*1,3*2,4=1644,2 грн.
VI 620*1,3*2,4=1934,4 грн.
знайдемо розмір заробітної плати робітників ІІ цеху враховуючи премії розміром 40% від заробітної плати по кожному розряду і коефіцієнт 2,4:
I 300,5*1,4*2,4=1009,68 грн.
II 310,1*1,4*2,4=1041,9 грн.
III 403*1,4*2,4=1354,1 грн.
IV 485,5*1,4*2,4= 1631,3 грн.
V 527*1,4*2,4=1770,7 грн.
VI 620*1,4*2,4=2083,2 грн.
Завдання 2.
Побудувати ряд розподілу робітників кожного цеху і всього заводу за кваліфікацією. Результати представити в табличній формі (таб.2). Дати назву таблиці, зобразити ряд графічно і зробити висновок.
Таблиця 2.2
Висновок
В І цеху 8 робітників мають ІІІ розряд, що складає 32% всіх працівників, і немає робітників VI розряду, а у ІІ цеху 9 робітників з ІV розрядом, що складає 31% від загальної кількості.
Завдання 3.
Побудувати ряд розподілу робітників кожного цеху і всього заводу за розміром місячного заробітку, виділивши 4 групи з рівними інтервалами. Дані представити в табличній формі (табл.2.3) дайте назву таблиці.
Зобразіть графічно отриманий ряд і проаналізуйте його.
Розв’язання:
Визначаємо ширину інтервалу за формулою:
і = EMBED Equation.3 , (1)
де EMBED Equation.3 і EMBED Equation.3 - найбільше, найменше значення ознаки;
EMBED Equation.3 - кількість груп.
EMBED Equation.3
1 - 937,6 - 1224,0
2 - 1224,0-1510,4
3 - 1510,4-1796,8
4 - 1796,8-2083,2
Таблиця 2.3
Аналізуючи діаграму можна сказати, що в першому цеху робітники, що входять до 1 групи і отримують заробітну плату від 937 до 1224 грн. становлять більшість, тобто 48% від всього робітничого персоналу. У ІІ цеху переважають робітники 3 групи заробітна плата яких складає від 1510,4 до 1796,8 грн. В загальному по заводі найбільше робітників 3 групи, які становлять 37% від загальної кількості, і отримують заробітну плату від 1510,4 до 1796,8 грн.
Завдання 4.
Провести комбінаційне групування робітників заводу за загальним стажем роботи та класифікацією (розрядом). Результати групування представити в таблиці(таб. 2.4). Зробіть висновки.
Таблиця 2.4
В І цеху переважають робітники 1 і 2 розрядів з стажем роботи 3-4 роки. В той час у ІІ цеху більшість робітників складають робітники 3 і 4 розряду стаж роботи яких складає 9 і більше років. Всього по заводу аналогічно до ІІ цеху домінують робітники 3-4 розрядів зі стажем роботи 9 років і більше, їх відсоток по групі становить 54%.
Завдання 5.
За результатами групування розрахуйте середній тарифний розряд і середню ЗРП по кожному цеху і по заводу в цілому.
Визначити моду тарифного розряду та заробітної плати.
Визначити медіану тарифного розряду та заробітної плати.
За даними завдання 2 і 5 визначте: дисперсію тарифного розряду та заробітної плати в кожному цеху і по заводу в цілому.
Порівняйте варіації по тарифному розряду і по заробітній платі.
Розв’язання:
Середній тарифний розряд та середню заробітну плату ми розраховуємо за формулою середньої арифметичної зваженої:
EMBED Equation.3 (2)
де х – індивідуальне значення ознаки, f – частота;
У нашому випадку х – це розряд, f – кількість робітників по кожному розряду.
Середній тарифний розряд І цеху дорівнює:
x1=1*6+2*6+3*8+4*3+5*2/25=2,56
ІІ цеху:
x2=2*4+3*4+4*9+5*6+6*6/29=4,21
По заводу:
x3=1*6+2*10+3*12+4*12+5*8+6*6/54=3,44
Оскільки заробітна плата визначена інтервально, то середнє значення заробітної плати визначаємо наступним чином:
знаходимо середину кожного інтервалу за формулою:
EMBED Equation.3 (3)
Це буде варіаційна ознака, частотою буде кількість робітників, що отримують відповідну заробітну плату. Побудуємо таблицю, в якій зазначимо середини інтервалів.
Таблицям 2.5
За формулою середньої зваженої обчислюємо середню ЗРП:
По І цеху:
x1=1080,8*12+1367,2*8+1653,2*5/25=1286,92
по ІІ цеху:
x2=1080,8*4+1367,2*4+1653,2*15+1940*6/29=1594,13
по заводу:
x3=1080,8*16+1367,2*12+1653,2*20+1940*6/54=1451,91
Модою тарифного розряду у І цеху буде:
Модою тарифного розряду у І цеху є «3 розряд»; ІІ цех «4 розряд» і всього заводу «4 розряд».
Модою в інтервальному ряду розподілу визначається за формулою:
EMBED Equation.3
звідси мода заробітної плати дорівнює:
І цех:
Завдання 6
Представити сукупність робітників заводу, як генеральну, сформулювати вибіркову сукупність, відібравши кожного 5-го робітника.
Для вибіркової сукупності:
побудувати графік кореляційного поля залежності ЗРП від розряду;
розрахуйте параметри лінійного рівняння регресії;
з допомогою коефіцієнта кореляції оцініть тісноту зв’язку і визначте його достовірність.
Для обчислення перерахованих завдань нам потрібно використати ряд формул:
EMBED Equation.3 (9)
EMBED Equation.3 (10)
EMBED Equation.3 (11)
EMBED Equation.3 (12) EMBED Equation.3 (13) EMBED Equation.3 (14)
Для розрахунку кореляційного відношення та індекса кореляції будуємо таблицю (Таблиця 2.12)
Таблиця 2.12
EMBED Equation.3 EMBED Equation.3
Отже, зв’язок між заробітною платою та розрядом становить 98,8%, а залежність заробітної плати від розряду – 97,6%.
Завдання 7
Відомі дані (табл.6) про оплату праці в цеху.
Таблиця 6
Обчисліть:
індекси середньої заробітної плати по кожній групі робітників.
Індекси середньої заробітної плати, фіксованого складу та структурних зрушень.
Загальні індекси фонду оплати праці і чисельності робітників (охарактеризуйте їхній взаємозв’язок з індексом середньої заробітної плати).
сформулюйте висновки.
Побудуємо таблицю, в яку запишемо розрахункові показники.
Таблиця2.14
Визначаємо індекси заробітної плати по кожній групі робітників.
Для цього використовуємо формулу для розрахунку індексу змінного складу:
EMBED Equation.3 ()
Індивідуальні індекси
І (слюсарів)= EMBED Equation.3
Отже, заробітна плата зросла на 21,8 %.
І (токарів)= EMBED Equation.3
Отже, заробітна плата зросла на 7,6 %.
І(штампувальників)= EMBED Equation.3
Отже, заробітна плата зросла на 13,3%.
Тепер визначаємо загальний індекс заробітної плати змінного складу:
EMBED Equation.3
Ми можемо сказати, що середня місячна заробітна плата робітників зросла на 5%, тобто менше, ніж по кожній групі робітників. Це пояснюється тим, що на індекс змінного складу впливають зміни в складі робітників різних професій: у звітному періоді зменшилося чисельність штампувальників, у яких рівень середньої заробітної плати в базисному періоді був вищим.
Звідси індекс заробітної плати змінного складу характеризує зміну середньої заробітної плати в кожній професії робітників і зміни частки робітників, які мають різний рівень заробітної плати.
Індекс середньої заробітної плати фіксованого складу обчислюємо виходячи з того, що структура чисельності працівників (або фонду відпрацьованого часу) за періоди,, що порівнюються, не змінилися.
Обчислення здійснюється за формулою:
EMBED Equation.3 ()
Отже, без урахування змін в структурі робітників середня заробітна плата зросла на 15,5%.
Динаміку середньої заробітної плати під впливом зміни структури робітників визначаємо за допомогою індексу структурних зрушень:
EMBED Equation.3 ()
Індекс показує, що середня заробітна плата робітників зменшилась на 9,1% за рахунок зменшення частки робітників-штампувальників з більш високим рівнем оплати праці.
Індекси середньої заробітної плати пов’язані з динамікою загальної суми фонду оплати праці й утворюють єдину індексну систему:
EMBED Equation.3
За обчисленнями даними ця система має такий вигляд:
1,05=1,55*0,909*1,000,
тобто в даному випадку зростання фонду оплати праці робітників було забезпечене не лише за чухонок зміни середньої плати, а й за рахунок зміни загальної чисельності робітників.