Розділ 2. Практична частина
Завдання 1
Відомі такі дані (табл.1) про роботу 30-ти плодоконсервних заводів за рік:
Таблиця 1
№ заводу
Основні виробничі фонди, тис. грн.
Середньоспискова чисельність робітників, чол.
Валова продукція, тис. грн.
Питома вага активної частини ОФВ,%

1
2
3
4
5

1
1301
336
3540
51

2
2371
302
3911
48

3
4562
440
5630
61

4
4967
510
5492
32

5
2864
290
2901
41

6
6568
591
9410
39

7
1681
271
1920
37

8
2066
304
2569
42

9
4841
340
3520
37

10
1801
271
2340
46

11
3081
363
3921
48

12
7262
381
8671
51

13
2161
227
1586
52

14
2582
267
3223
53

15
3991
467
4224
34

16
5358
395
3410
41

17
3361
254
1326
60

18
4261
437
4774
86

19
4015
575
2801
49

20
4401
189
3556
87

21
4990
570
6958
83

22
4443
574
5096
67

23
4961
630
8414
69

24
4401
350
2086
43

25
7901
686
5194
92

26
4961
308
1890
76

27
7061
644
4900
81

28
4541
532
1736
59

29
1797
209
2436
64

30
3302
421
2646
69

Побудуємо ряд розподілу плодоконсервних заводів за вартістю ОВФ, утворивши 5 груп з рівними інтервалами.
По кожній групі підрахуємо:
А) число заводів;
Б) середньоспискову чисельність працівників;
В) валову продукцію (всього і на одного робітника).
Розрахунки представимо в таблиці (табл. 2). Зробимо короткі висновки. Відобразимо ряд розподілу за допомогою графіка.
Виконаємо групування заводів за двома ознаками: чисельністю робітників та вартістю ОВФ (табл. 3). Розрахуємо для кожної групи техніко-економічні показники. Зробити висновки.
Розв’язання :
1) Побудуємо ряд розподілу плодоконсервних заводів за вартістю ОВФ. Утворимо 5 груп з рівними інтервалами. Оскільки кількість груп дано, то визначаємо величину інтервалу за формулою, n = 5:
і = = = 1320
Утворюємо групи інтервалів:
1301 - 2621
2621 - 3941
3941 - 5261
5261 - 6581
6581 - 7901
Групові показники зведемо і отримаємо зведену таблицю результатів групування
Групування заводів за вартістю ОВФ
Таблиця 2
Групи заводів за вартістю ОВФ
Кількість заводів
Чисельність робітників
Валова продукція
Фондовіддача, грн.




Всього, тис. грн.
На 1 робітника, грн.


1301 – 2621
8
2187
21525
9,84
0,63

2621 – 3941
4
1328
10794
8,13
0,39

3941 – 5261
13
5922
56177
9,48
0,43

5261 – 6581
2
986
12840
13
0,48

6581 - 7901
3
1711
18765
10,96
0,38

Разом
30
12134
120081
48,63



Висновок : в результаті проведеного простого групування плодоконсервних заводів за вартістю ОВФ, можна зробити наступні висновки: з 5 груп у IIІ групі знаходиться найбільше заводів – 13. У цій групі найбільша чисельність робітників – 5922 чол. та валова продукція – 56177 тис.грн.
Відобразимо ряд за допомогою графіка

мал. 1. Групи заводів за розміром вартості ОВФ

2) Виконаємо групування заводів за двома ознаками: чисельністю робітників та вартістю ОВФ. Розрахуємо для кожної групи техніко-економічні показники. Розрахунки представимо в табличній формі (табл.2.3.).
Визначаємо величину інтервалу
і = = = 99,4
Утворюємо групи інтервалів:
189 – 288,4
288,4 – 387,8
387,8 – 487,2
487,2 – 586,6
586,6 - 686
Комбінаційне групування
Групування плодоконсервних заводів по групах за чисельністю робітників та підгрупах за вартістю ОВФ
Таблиця 2
Групи заводів за середньосп.
чисельністю робітників, чол.
Підгрупи заводів за вартістю ОВФ, тис. грн.
Кільк. заводів
Валова продукція
Фондовіддача, грн.




всього, тис. грн.
на 1 робітника, грн.


189–288,4
1301 – 2621
5
11505
9,24
0,53


2621 – 3941
1
1326
5,22
0,18


3941 – 5261
1
3556
18,81
0,36


5261 – 6581
-
-
-
-


6581 - 7901
-
-
-
-

Разом
-
7
16387
33,27
-

288,4-387,8
1301 – 2621
3
10020
10,63
0,80


2621 – 3941
2
6822
10,44
0,52


3941 – 5261
 3
7496
7,51
 0,23


5261 – 6581
-
-
-
-


6581 - 7901
1
8671
22,75
0,53

Разом
-
9
33009
51,35
-

387,8–487,2
1301 – 2621
-
-
-
-


2621 – 3941
1
2646
6,28
0,0,36


3941 – 5261
3
14628
10,88
0,51


5261 – 6581
1
3410
8,63
0,28


6581 - 7901
-
-
-
.

Разом
-
5
20684
25,80
-

487,2–586,6
1301 – 2621
-
-
-
-


2621 – 3941
-
-
-
-


3941 – 5261
5
22083
7,99
0,43


5261 – 6581
-
-
-
-


6581 - 7901
-
-
-
-

Разом
-
5
22083
7,99
-

586,6-686
1301 – 2621
-
-
-
-


2621 – 3941
-
-
-
-


3941 – 5261
1
8414
13,35
0,77


5261 – 6581
1
9410
15,92
0,64


6581 - 7901
2
10094
7,58
0,30

Разом
-
4
27918
36,86
-

Всього

30
120081
155,29
 -


Висновок : найчисельнішою є II група. . Валова продукція у ІІ групі також найбіша і становить 33009 тис.грн.
Завдання 2.
Використовуючи ряд розподілу за вартістю ОВФ (табл.2) обчислити:
а) середню вартість ОВФ в розрахунку на один завод;
б) моду даного ряду;
в) медіану;
г) середнє лінійне відхилення.
Розв’язання :
а) ознаку X обчислимо як середину інтервалів груп. Для цього до нижньої межі додамо верхню і поділимо на два, тоді середня вартість ОВФ буде становити:
= ;
Групи заводів за вартістю ОВФ, тис. грн.
Середина інтервалу
Кількість заводів
 











 
X
F
X*F

1301 – 2621
1961
8
15688

2621 – 3941
3381
4
13524

3941 – 5261
4601
13
59813

5261 – 6581
5921
2
11842

6581 - 7901
7241
3
21723

Разом
23105
30
122590


= = 4086,33 грн.
б) Для визначення моди знаходимо модальний інтервал, якому відповідає найбільша частота, тобто модальний інтервал буде в межах : 3971 – 5291:
Мо =
Мо = 3941+1320 = 4506,7
Отже, найбільш розповсюдженою величиною вартості ОВФ є 4506,7грн.
в) Для визначення медіани знайдемо медіанний інтервал. Для цього знайдемо кумулятивні частоти .Так як кумулятивна частота медіанного інтервалу повинна бути більшою або рівною півсумі частот ( ), то медіанний інтервал відповідає кумулятивній частоті 13 і рівний (3941 - 5261):
Ме =
— початкове значення інтервалу, що містить медіану;
— величина медіанного інтервалу;
— сума частот ряду;
— сума накопичених частот, що передують медіанному інтервалу;
— частота медіанного інтервалу.
= = 15;
Ме = 3941 + 1320 = 4245,6
Отже, 50% заводів мають вартість ОВФ більше ніж 4245,6 грн., а інші 50% - менше ніж 4245,6 грн.
г) середнє лінійне відхилення
4.Будуємо розрахункову таблицю для знаходження середнього лінійного відхилення:
Табл.6. Розрахункова таблиця
Групи заводів за вартістю ОВФ, тис. грн.
Середина інтервалу
Кількість заводів
 
 














X
F
|X-Xс|
|X-Xс|*F

1301 – 2621
1961
8
2125,33
17002,64

2621 – 3941
3381
4
705,333
2821,332

3941 – 5261
4601
13
514,6667
6690,667

5261 – 6581
5921
2
1834,667
3669,334

6581 - 7901
7241
3
3154,667
9464,001

Разом
23105
30

39647,97




== 1321,6 грн.
Середній модуль відхилень індивідуальних значень ознаки від середньої величини вартості ОВФ становить 1321,6 грн.
Завдання 3.
На основі даних про ОВФ заводів (Завд. 1) визначимо :
розмах варіації;
дисперсію;
середнє квадратичне відхилення;
коефіцієнт варіації;
Пояснимо економічний зміст розрахованих показників.
1) Розмах варіацій для даного інтервального ряду визначається:
R = Xmax – Xmin;
R = 7901 - 1301 = 6600 грн.
2) дисперсія
?2 = ;
Табл.7. Розрахункова таблиця
Групи заводів за вартістю ОВФ, тис. грн.
Середина інтервалу
Кількість заводів



















X
F
|X-Xс|
|X-Xс|2
|X-Xс|2F

1301 – 2621
1961
8
2125,33
4517028
36136221

2621 – 3941
3381
4
705,333
497494,6
1989979

3941 – 5261
4601
13
514,6667
264881,8
3443464

5261 – 6581
5921
2
1834,667
3366003
6732006

6581 - 7901
7241
3
3154,667
9951924
29855772

Разом
23105
30


78157441


?2 = 78157441/30= 2605248 грн.
Чим більша дисперсія, тим більше розсіювання даних ряду розподілу. Про наш ряд розподілу можна сказати, що він характеризується великим розсіюванням даних.
середнє квадратичне відхилення
= = 1614,01 грн.
Чим меншим є середнє квадратичне відхилення тим типовішою є середня і тим більшою є однорідна сукупність.
4) Відносною мірою варіації е коефіцієнт варіації, що дозволяє порівнювати ступінь варіації ознаки по ряду:
= = =0,395 або 39,5 %
Якщо коефіцієнт варіації менше 33% це значить, що сукупність однорідна, якщо більше 33%, то сукупність неоднорідна. В нашому випадку сукупність є неоднорідною, оскільки 39,5% < 33%.
Отже, сукупність неоднорідна, а середня - типова.
Завдання 4.
Використовуючи вихідні дані (Завд. 1) побудуємо кореляційну таблицю для дослідження зв’язку між розміром валової продукції та вартістю ОВФ.
знайдемо рівняння регресії;
зобразимо емпіричні та теоретичні дані на графіку;
обчислимо лінійний коефіцієнт і кореляційне співвідношення;
перевіримо істотність зв’язку за допомогою F- критерію з рівнем істотності = 0,05; Поясніть економічну сутність обчислених показників.
Розв’язання :
1) Використовуючи вихідні дані побудуємо кореляційну таблицю для дослідження зв’язку між розміром валової продукції та вартістю ОВФ:
Кореляційна таблиця для дослідження зв’язку між розміром валової продукції та вартістю ОВФ
Таблиця 2.6.

маг.
Прибуток, млн. грн. (X)
Витрати обігу, млн. грн. (Y)
Y2
Х2
X*Y

Yx

(Yx -Yсер)²

(Y-Yсер)²

(Y- Yx)²

1
1301
3540
12531600
1692601
4605540
1864,0
4574018,8
214091,3
2808961,2

2
2371
3911
15295921
5621641
9272981
2692,9
1715559,9
8408,9
1483752,6

3
4562
5630
31696900
20811844
25684060
4390,2
150170,2
2648105,3
1537059,4

4
4967
5492
30162064
24671089
27278764
4704,0
491767,3
2218014,5
621005,2

5
2864
2901
8415801
8202496
8308464
3074,8
860960,0
1213742,9
30213,6

6
6568
9410
88548100
43138624
61804880
5944,2
3769480,9
29238893,3
12011665,0

7
1681
1920
3686400
2825761
3227520
2158,4
3401513,6
4337639,3
56825,4

8
2066
2569
6599761
4268356
5307554
2456,6
2390331,1
2055495,7
12626,9

9
4841
3520
12390400
23435281
17040320
4606,4
364396,0
232999,3
1180161,1

10
1801
2340
5475600
3243601
4214340
2251,3
3067256,0
2764571,3
7860,3

11
3081
3921
15374241
9492561
12080601
3242,9
577258,0
6674,9
459785,6

12
7262
8671
75186241
52736644
62968802
6481,8
6146131,2
21793024,9
4792425,0

13
2161
1586
2515396
4669921
3427346
2530,2
2168184,1
5840438,9
891559,9

14
2582
3223
10387729
6666724
8321786
2856,4
1314089,7
607932,1
134423,1

15
3991
4224
17842176
15928081
16857984
3947,9
3005,4
48973,7
76242,9

16
5358
3410
11628100
28708164
18270780
5006,9
1008335,2
351293,3
2549958,4

17
3361
1326
1758276
11296321
4456686
3459,8
294703,6
7164722,9
4553247,2

18
4261
4774
22791076
18156121
20342014
4157,0
23821,1
594903,7
380638,4

19
4015
2801
7845601
16120225
11246015
3966,5
1312,5
1444082,9
1358322,8

20
4401
3556
12645136
19368801
15649956
4265,5
69061,4
199540,9
503383,7

21
4990
6958
48413764
24900100
34720420
4721,8
517074,2
8733798,1
5000685,7

22
4443
5096
25969216
19740249
22641528
4298,0
87220,8
1195304,9
636753,3

23
4961
8414
70795396
24611521
41741854
4699,3
485269,9
19459567,7
13798898,4

24
4401
2086
4351396
19368801
9180486
4265,5
69061,4
3673738,9
4750200,3

25
7901
5194
26977636
62425801
41037794
6976,9
8845605,3
1419195,7
3178576,3

26
4961
1890
3572100
24611521
9376290
4699,3
485269,9
4463501,3
7892240,4

27
7061
4900
24010000
49857721
34598900
6326,1
5398325,3
805147,3
2033845,7

28
4541
1736
3013696
20620681
7883176
4373,9
137826,5
5137928,9
6958779,4

29
1797
2436
5934096
3229209
4377492
2248,2
3078119,4
2454548,9
35252,7

30
3302
2646
7001316
10903204
8737092
3414,1
346416,9
1840634,9
590020,8

Разом
121853
120081
612815135
581323665
554661425
120081
51841545,5
132166916,3
80325370,8

Сер зн
4061,7
4002,7
20427171,17
19377456
18488714,2
4002,7
1728051,5
4405563,9
2677512,4


2. Для розрахунку параметричного рівняння регресії ми побудували розрахункову таблицю. Використовуємо рівняння прямої:


Рівняння кореляційного зв’язку має вигляд:


3) зобразимо емпіричні та теоретичні дані на графіку:

мал. 2. Графік емпіричних та теоретичних даних
Емпіричні дані наближені до теоретичних.
4) Для вимірювання тісноти зв’язку і визначення його напрямку при лінійній залежності використаємо лінійний коефіцієнт кореляції.
(9)
Усі дані для обчислення коефіцієнта кореляції є в таблиці 2.6.
Таке значення лінійного коефіцієнта кореляції (0,63) свідчить про наявність сильного прямого зв’язку.
Кореляційне співвідношення розраховується за допомогою формули:
(тис. грн.)
Індекс кореляції:
(тис. грн.)
Коефіцієнт детермінації:

Коефіцієнт детермінації показує, що варіація результативної ознаки (розмір валової продукції) на 65,4% залежить від вартості ОВФ, а на 34,6% від інших факторів.
5. Розрахуємо F- критерій за формулою:
(10)
Визначимо число ступенів вільності між групової дисперсії і середню з групових дисперсій :
= m-1, = n-m
m - кількість груп,
n – кількість елементів сукупності;
= 3 – 1=2
= 30 – 3=27
Знайдемо F- критерій за таблицею з додатку 8, .
Розрахуємо критерії Фішера для того, щоб підтвердити істотність зв’язку допустимого F-критерію при рівній значимості L=0,05;

Розрахуємо F- критерій за формулою

Оскільки , то для нашого випадку зв’язок буде не істотним.
Завдання 5
Для порівняльного аналізу зростання ОФ приведемо ряди динаміки до спільної основи. Нанесемо відносні величини динаміки на лінійний графік. Визначимо коефіцієнт випередження. Зробимо висновки.
Для динаміки вартості меліоративних фондів обчислимо:
Темпи росту
Абсолютні та відносні прирости
Абсолютні значення одного проценту приросту
Абсолютний середній приріст
Середній темп росту та приросту
Таблиця 4
Роки
1980
1985
1990
1995
2000
2005

Всього ОФ
1904
2356
2542
3010
3752
3996

Меліоративні фонди
356
420
705
754
798
806


Привернемо ряд динаміки до спільної основи. Для цього 1980 р. беремо за 100, тоді 1975р.=2356/420=5,61.
Таблиця 5
Роки
1980
1985
1990
1995
2000
2005

Всьго ОФ
100
561
361
399
470
496

Меліоративні фонди
100
420
705
754
798
806



мал. 3. Відносні величини динаміки
Спільна основа
Таблиця 6
Роки
Меліоративні фонди
Абсолютний приріст
Темпи росту
Темпи приросту
Абсолютні значення 1 %



Ланц.
Баз.
Ланц.
Баз.
Ланц.
Баз.


1980
356
-
-
100
100
-
-
-

1985
420
64
64
117,98
117,98
17,98
17,98
3,56

1990
705
285
349
167,86
198,03
98,03
67,86
4,2

1995
754
49
398
106,95
211,80
111,80
6,95
7 7,05 7,05

2000
798
44
442
105,84
224,16
124,16
5,84
7,54

2005
806
8
450
101,00
226,40
126,40
1,00
7,98


Розв’язання :
1) темпи ростуТемп росту є відносною характеристикою інтенсивності рівнів ряду динаміки тобто він характеризує відносну швидкість їх зміни. Обчислюється зіставляючи два рівні ряду за формулою:
- для ланцюгового темпу росту;
- для базисного темпу росту;
- рівень ряду з яким роблять співставлення,
- базисний рівень ряду,
- попередній рівень ряду
За базисний рік приймемо 1980.
2) абсолютні та відносні прирости
Показує наскільки одиниць власного вимірювання підвищується або знижується рівень за певний проміжок часу, тобто характеризує абсолютну швидкість зміни рівнів ряду динаміки. Він обчислюється як різниця рівнів ряду динаміки:
- для ланцюгового темпу росту;
- для базисного темпу росту
- рівень ряду з яким роблять співставлення;
- базисний рівень ряду;
- попередній рівень ряду
3) абсолютні значення одного проценту приросту
Показує що являє собою в абсолютному вираженні кожен % приросту, тобто який він має реальний зміст. Обчислюється діленням абсолютного приросту на темп приросту за той самий період:

4) абсолютний середній приріст
Середній приріст показує на скільки в середньому за одиницю часу, в нашому випадку за рік, змінювались рівні ряду динаміки.


5)середній темп росту та приросту

Середній темп приросту обчислюється як різниця між темпом росту і 1 (100%):
або 78%.

Завдання 6
Виконаємо аналітичне вирівнювання ряду по прямій та побудуємо тренд. Розрахунки представимо графічно.
Рівняння лінії тренду:

Спосіб найменших квадратів передбачає систему рівнянь:

Таблиця 7
Роки
 
ОФ
Y
T
 
T2
 
YT
 Yt 

1980
1904
-3
9
-5712
1904,952

1985
2356
-2
4
-4712
2245,524

1990
2542
-1
1
-2542
2586,095

1995
3010
1
1
3010
3267,238

2000
3752
2
4
7504
3607,81

2005
3996
3
9
11988
3948,381

Разом
17560
0
28
9536
17560


При підстановці ?t = 0 у систему рівнянь отримуємо:

А0 = 17560 = 2926,67
6

А1= 9536 = 340,57
28

Yt=3926,667 + 340,5714t

мал. 4 Аналітичне вирівнювання ряду
Завдання 7
Для встановлення ступеню зрілості перевіреного взірця (400 кг) розрізано 10 кавунів загальною вагою 40 кг, із яких зрілих плодів було 30 кг.
Визначити з ймовірністю 0,954 границі частки дозрілих кавунів у всій партії продукції (30 000кг).
Розв’язок:
1)Визначаємо границі частки за формулою:
;
W = 30 = 0,075
400
2)Визначаємо границі частки:


При ймовірності 0,954 t = 2. Тоді