Лекція 1.4.
ОСНОВИ ТЕОРІЇ ПОХИБОК ВИМІРЮВАНЬ.
КЛАСИФІКАЦІЯ ПОХИБОК.
Похибки вимірювань
Показники якості вимірювань.
Невизначеність вимірювань
Систематична похибка опосередкованих вимірювань при нелінійній залежності
Оцінка результатів і похибок сумісних та сукупних вимірювань
Практична корисність будь-якого вимірювання визначається вказанням його похибки, тобто кількісної характеристики відхилення результату вимірювання від істинного значення вимірюваної фізичної величини. Виникнення похибок вимірювань обумовлено впливом різноманітних за фізичною природою факторів, що супроводжують вимірювання. Традиційний аналітичний підхід до визначення похибок полягає в поділі їх на складові, кожна з яких зумовлена певними факторами. Це дозволяє досліджувати джерела складових похибки, проводити необхідні експерименти, в тому числі допоміжні вимірювання, і, як наслідок, визначити властивості похибки та з необхідною точністю оцінити її складові. Знаючи властивості й оцінки складових, можна правильно урахувати їх при оцінці повної похибки, а також при необхідності ввести поправку в результат вимірювання й (або) організувати вимірювальний експеримент так, щоб звести окремі складові, а з ними й повну похибку до допустимого значення. Для підвищення об’єктивності оцінки похибок вимірювань і визначення шляхів їх зменшення, з метою покращання якості вимірювань, необхідно знати джерела (причини) виникнення різних складових повної похибки вимірювань і закономірності їх змінювання.
Похибки вимірювань розрізняють за такими ознаками (рис.1):
за джерелом виникнення;
за способом вираження;
за залежністю від значення вимірюваної величини;
за режимом вимірювання;
за закономірністю або характером змінювання (в часі або за ансамблем);
за формою або способом відображення кількісних характеристик похибки вимірювань.
Класифікація похибок вимірювань за джерелом виникнення
Цілком природно виділити складові похибки та їх джерела відповідно до основних структурних елементів процесу вимірювання. Виходячи з цього, як джерела похибок вимірювань слід розглядати метод вимірювання і ЗВТ, а також оператора (суб’єкта). Згідно з цим виділяють методичну, інструментальну та суб’єктивну складові похибки вимірювань.
Методична складова похибки вимірювання у загальному випадку зумовлена недосконалістю методу вимірювання, вона не залежить від властивостей ЗВТ.
Конкретизуємо джерела методичних похибок для прямих і непрямих (опосередкованих, сукупних і сумісних) вимірювань.
До найбільш поширених методичних похибок прямих вимірювань належать:
1. Похибка, обумовлена неадекватністю фізичної моделі об’єкта вимірювання реальному об’єкту та задачі вимірювання. Експериментатор мусить чітко відрізняти фактично вимірювану величину за прийнятою фізичною моделлю ОВ від тієї фізичної величини, що реально відтворює досліджувану властивість ОВ і підлягає вимірюванню.
Наприклад, при вимірюванні на виході будь-якого ОВ змінної напруги її форма прийнята синусоїдною, у той час як реальний сигнал не є синусоїдним і містить вищі гармоніки. Тому якщо відповідно до прийнятої фізичної моделі ОВ для вимірювання амплітуди або змінної напруги на виході ОВ використати вольтметр, призначений для вимірювання синусоїдної напруги, то в результат вимірювання буде внесена методична похибка, обумовлена дією вищих гармонік, присутніх у реальному сигналі ОВ.
EMBED Unknown
Рис.1. Класифікація похибок вимірювань.
Невідповідність прийнятої фізичної моделі ОВ, що називають пороговою невідповідністю, викликає одну з принципово неусувних складових методичної похибки, яка обмежує досяжну точність вимірювання. Це спричиняється тим, що фізична модель ОВ визначає вимірювану величину, а звідси - вибір методу вимірювання і засобу (засобів) вимірювальної техніки.
2. Похибка, яка зумовлена зміною залежності між вимірюваною і проміжною величинами, якщо при вимірюваннях використовується проміжне перетворення ЗВТ.
3. Похибка передавання розміру вимірюваної величини від ОВ до ЗВТ, тобто фізичне з’єднання ЗВТ з ОВ не завжди здійснюється так, щоб розмір вимірюваної величини був однаковий на виході ОВ і на вході ЗВТ. Наприклад, таку похибку можуть вносити з’єднувальні проводи між ОВ і ЗВТ.
До характерних методичних похибок, які є специфічними для непрямих вимірювань, належать:
1. Похибка обчислювань, у тому числі похибка алгоритмів або програм обчислювань.
2. Похибка, обумовлена тим, що функції (функціонали) обчислюються, як безперервні, а реально вони є дискретними (вимірювання здійснюються при дискретних значеннях фізичної величини ? аргументу).
Відмітною особливістю методичних похибок вимірювань є те, що вони, як правило, неконкретні і тому не можуть бути одержані будь-які узагальнені кількісні оцінки. Враховуючи це, методичні похибки звичайно не нормуються і не вказуються в технічній документації, а повинні оцінюватися експериментатором при реалізації вибраного методу вимірювань з урахуванням конкретних умов експлуатації ЗВТ. Така оцінка досить складна і часто потребує ґрунтовного експериментального дослідження прийнятого методу вимірювань. Якщо метод апробований протягом тривалого часу, то його похибки можуть бути встановлені і записані в паспорт методу. Складання подібних атестаційних паспортів похибок стандартних методів вимірювань є одним з важливих завдань сучасної метрології.
Інструментальна (приладова, апаратурна) складова похибки вимірювання обумовлена властивостями (або недосконалістю) ЗВТ, які використовуються при вимірюванні, що призводить до різних складових похибки. Детальному розгляду інструментальних похибок вимірювань присвячується глава 3.
Суб’єктивна (або особиста) складова похибки вимірювання залежить від індивідуальних властивостей експериментатора (суб’єкта), що виконує вимірювання, а точніше від його психофізіологічних якостей, зокрема, від недосконалості органів чуттів, які беруть участь у визначенні результату вимірювання (зору, слуху, швидкості реакції на сигнал), від здатності до концентрації уваги, від ступеня стомленості і т. ін. Велику роль відіграє кваліфікація експериментатора.
Суб’єктивна похибка вимірювання характерна тільки для аналогових вимірювальних приладів. Вона має два різновиди.
Першим різновидом суб’єктивної похибки вимірювань є похибка відліку, яка обумовлена округленням показів під час їх відліку оператором зі шкали аналогового вимірювального приладу. Вона проявляється в тому, що однаковий показ приладу, який, наприклад, дорівнює 84,3 поділки, один оператор зчитує правильно, другий ? як 84,0, третій ? як 84,5 і т.д.
Другим різновидом суб’єктивної похибки вимірювань є похибка паралакса, обумовлена взаємним розташуванням ока експериментатора, стрілки вказівника і шкали аналогового вимірювального приладу.
Очевидно, такі похибки не можуть бути заздалегідь передбачені і вказані в технічній документації аналогових вимірювальних приладів. У цифрових вимірювальних приладах операція округлення виконується автоматично, а похибка округлення, що виникає при цьому, називається похибкою квантування, вона нормується і вказується в технічному описі приладу.
Зменшення або виключення суб’єктивної складової похибки вимірювання досягають застосуванням спеціальних типів шкал, наприклад дзеркальних, використанням цифрового відліку і автоматизацією одержання результату вимірювання.
Таким чином, суб’єктивні похибки вимірювань поки що не можуть бути оцінені кількісно, а тому вони не входять у математичну модель повної похибки вимірювань. Їх треба зменшувати або виключити, але про них слід завжди пам’ятати під час відліку оператором показів зі шкали аналогового вимірювального приладу.
Різновиди похибок вимірювань за закономірністю їх зміни
Похибки вимірювань відрізняються закономірністю або характером зміни при повторних вимірюваннях (у часі та за ансамблем реалізацій) і за цією ознакою їх поділяють на випадкові та систематичні. Ця кваліфікаційна ознака поділу похибок вимірювання на складові має дві мети.
Перша і визначальна мети: придатність тих або інших математичних методів підсумовування (об’єднання) складових похибки вимірювання для аналітичного розрахунку його повної похибки. Так, якщо складові похибки вимірювання залишаються постійними або закономірно змінюються, то для їх розрахунку і підсумовування придатні методи функціонального аналізу. Якщо ж складові похибки вимірювання змінюються стохастично (випадково), то для їх розрахунку та підсумовування використовуються методи теорії ймовірностей і математичної статистики.
При досягненні першої мети можна забезпечити і другу мету розподілу похибки вимірювання на систематичну і випадкову ? визначення раціональних методів зменшення цих складових.
Випадкова похибка ? це складова похибки вимірювання, що змінюється випадково (непередбачено за значенням і знаком) при повторних вимірюваннях того самого розміру фізичної величини.
Поява випадкових похибок зумовлена в основному дією на метрологічні характеристики ЗВТ великої кількості внутрішніх і зовнішніх факторів, що змінюються випадково, тобто випадкові похибки є, як правило, інструментальними. Крім того, випадкову похибку може вносити і недосвідчений оператор, який не володіє стійкими навичками відліку показів аналогових вимірювальних приладів.
У силу непередбаченості випадкова складова похибки не може бути виключена з результату вимірювання, але вона може бути зменшена при статистичній обробці багаторазових спостережень.
Окремий вид випадкових похибок складають грубі похибки. До них належать ті похибки, реальні значення яких істотно перебільшують очікувані значення, відповідні основним компонентам процесу вимірювання (застосованим методу і ЗВТ, а також умовам вимірювання). Причинами грубих похибок є помилки оператора, несправність і неправильне застосування ЗВТ, короткочасні і різкі змінювання умов вимірювання, наприклад, короткочасна втрата живлення в будь-якому електричному колі, збій від імпульсних завад, механічний удар та ін. Особливо великі за значенням грубі похибки називають надмірними. Вони викликаються, як правило, невірними діями оператора (порушенням правил експлуатації ЗВТ, помилками при відліку та записі результатів вимірювань). Грубі похибки доцільно виявляти і виключати з розгляду, для їх виявлення існують статистичні методи. Результат вимірювання, який одержаний з надмірними похибками, називають промахом (або аномальним результатом вимірювання). Промахи настільки очевидні, що є досить помітними для досвідченого оператора на етапі попереднього аналізу результатів вимірювань. Вони повинні бути обов’язково вилучені з подальшого розгляду.
Систематична похибка ? це складова похибки вимірювання, яка при повторних вимірюваннях того самого розміру фізичної величини залишається постійною або змінюється за певним законом.
Систематичні похибки за причинами, що їх викликають, можуть бути методичними, інструментальними і суб’єктивними. Окремі інструментальні похибки ЗВТ, будучи систематичними для конкретного зразка ЗВТ, переходять у розряд випадкових для групи однакових ЗВТ, наприклад, неточність градуювання їх шкал. Це стосується і методичних похибок вимірювань.
За характером змінювання від вимірювання до вимірювання розрізняють постійні і змінні систематичні похибки вимірювань.
Постійні систематичні похибки вважаються незмінними за значенням у будь-який час вимірювань. До них належать методичні похибки, такі інструментальні похибки, як неточність міри, вхідного подільника напруги і градуювання приладу, а також суб’єктивні похибки досвідчених операторів зі стійкими навичками.
Постійні систематичні похибки є найбільш небезпечними, оскільки їх присутність у результатах вимірювань дуже важко виявити. Це пов’язано з тим, що така похибка, на відміну від випадкових та інших видів систематичних похибок, ніяк себе не проявляє при повторних вимірюваннях. Для її виявлення часто потрібно проводити спеціальні метрологічні дослідження, простим прикладом яких може бути звірення показів робочого ЗВТ з показами зразкового ЗВТ (повірка).
Основною відмінністю та особливістю постійних систематичних похибок є те, що вони можуть бути передбачені і завдяки цьому майже повністю усунені введенням відповідних поправок, знайдених один раз на весь термін служби або, принаймні, на міжповірочний інтервал даного ЗВТ.
Змінні систематичні похибки змінюються в процесі вимірювання за певним законом у функції часу (або від вимірювання до вимірювання), тобто детерміновано. За характером змінювання їх поділяють на прогресуючі, періодичні й змінювані за складним законом.
Прогресуючими (або дрейфовими) називають систематичні похибки, які монотонно збільшуються або зменшуються в часі. Вони, як правило, викликаються процесами старіння тих чи інших вузлів і елементів ЗВТ: розрядженням автономних джерел живлення, старінням резисторів і конденсаторів, деформацією механічних деталей, усадкою паперової стрічки в самописних приладах і т.д.
Першою особливістю прогресуючих похибок є те, що вони можуть бути скореговані введенням поправок у результати вимірювань лише в задані моменти часу. Це означає, що прогресуючі похибки потребують безперервної корекції і тим частіше, чим меншим повинно бути їх залишкове значення. Друга особливість прогресуючих похибок полягає в тому, що їх змінювання в часі являє собою, строго кажучи, нестаціонарний випадковий процес, і тому їх належність до систематичних похибок є досить умовною.
За складним законом систематична похибка змінюється в тому випадку, коли вона викликається декількома факторами, кожний з яких змінюється за певним законом, властивим цьому фактору.
Отже, особливою ознакою систематичних похибок є можливість передбачення їх значень і в ідеальному випадку повного вилучення з результатів вимірювань.
Окремі фахівці до систематичних похибок зараховують тільки постійні похибки, при цьому основною ознакою є постійність поправки до кожного результату вимірювання на весь термін служби ЗВТ. Нам більш правильним здається перший підхід, при якому систематичні похибки можуть бути враховані або скореговані незалежно від характеру їх змінювання. Якщо ж за якоюсь причиною систематичні похибки враховані бути не можуть (не вдається їх описати або визначити інструментально), тоді їх називають не вилученими систематичними похибками і відносять до випадкових похибок.
На противагу систематичній похибці випадкова похибка не може бути заздалегідь передбачена і вилучена з результату вимірювання, вона може бути тільки зменшена.
Таким чином, у загальному випадку повна похибка результату вимірювання складається з систематичної і випадкової складових, тому її слід розглядати в цілому як випадкову величину. Математичне сподівання повної похибки вимірювань являє собою її абсолютну систематичну складову EMBED Equation.3, центрована складова повної похибки вимірювань ? її абсолютну випадкову складову EMBED Equation.3. Тоді за будь-яким законом розподілу абсолютну повну похибку вимірювань можна подати у вигляді:
EMBED Equation.3, (1)
деEMBED Equation.3 EMBED Equation.3 M ? знак математичного сподівання.
Якщо постійна систематична складова похибки вимірювання EMBED Equation.3 відома, її вилучають з результату вимірювання X (або вводять поправку) і тим самим переходять до виправленого результату вимірювання
EMBED Equation.3. (2)
Виправленим називається результат вимірювання EMBED Equation.3, з якого введенням поправки вилучена систематична складова похибки вимірювання. У противному разі результат вимірювання X є невиправленим, але цей термін звичайно не вживають.
Форми (способи) відображення кількісних характеристик похибок вимірювань
Кількісні характеристики похибок вимірювань відображають у двох формах (двома способами): абсолютній і відносній. Відповідно розрізняють абсолютну і відносну похибки вимірювань.
Абсолютна похибка вимірювання ? різниця між результатом вимірювання X та істинним значенням вимірюваної величини EMBED Equation.3. Якщо істинне значення вимірюваної величини невідоме, то замість нього використовують умовно істинне (дійсне) значення Xy. Таким чином,
?Х = Х ? Хі = Х ? Хy. (3)
З абсолютною похибкою пов’язано поняття "поправка".
Поправка ? значення величини, однорідної з вимірюваною, що алгебраїчно додається до результату вимірювання з метою вилучення систематичної похибки вимірювань ?c = ?Х. З рівності (3) маємо
Xy = X + (??X) = X + П. (4)
З виразу (4) можна зробити висновок: якщо до результату вимірювання X додати абсолютну похибку з протилежним знаком EMBED Equation.3, то одержимо більш точне, умовно істинне (дійсне) значення вимірюваної величини Xy або виправлений результат EMBED Equation.3. Тим самим здійснюється певною мірою уточнення результату вимірювання X. Отже, величина EMBED Equation.3 є поправкою П до результату вимірювання X: EMBED Equation.3. Абсолютна похибка вимірювання і поправка виражаються в одиницях вимірюваної фізичної величини.
Відзначимо, що постійна систематична похибка "зсуває" всі результати вимірювань на однакову величину, що призводить до певних труднощів її виявлення і введення відповідної поправки.
На відміну від поправки як адитивної величини вводиться поняття "коригувальний коефіцієнт".
Коригувальний коефіцієнт ? це числовий коефіцієнт, на який помножують невиправлений результат вимірювання X з метою вилучення мультиплікативної систематичної похибки:
EMBED Equation.3,
деEMBED Equation.3 ? коригувальний коефіцієнт.
Абсолютна похибка EMBED Equation.3 характеризує лише якість результату вимірювання, але не може бути мірою точності вимірювання. Так, абсолютна похибка вимірювання напруги, що дорівнює 0,1 B, ні про що не говорить, якщо її не співвіднести з результатом вимірювання напруги, залежно від якого вона має різний зміст. Нехай, наприклад, маємо результати вимірювань двох значень напруги: 10 B і 100 B. Очевидно, при однаковій абсолютній похибці 0,1 B якість вимірювань при значенні напруги 100 В вища, ніж при значенні напруги 10 В, оскільки на рівні 100 В похибка в 0,1 В відбивається менше, ніж на рівні 10 В.
Таким чином, про точність вимірювань не можна судити на основі порівняння абсолютних похибок результатів вимірювань. Для цього ще необхідно порівняти і значення вимірюваних фізичних величин, що є досить незручним для практики: порівняти дві кількісні характеристики ? значення і похибку вимірюваної величини. Усунути цей недолік дозволяє перехід до похибки вимірювань, яка виражається у відносних одиницях і називається тому відносною похибкою вимірювань. Вона об’єднує обидві вказані вище кількісні характеристики вимірювань: результат вимірювання і абсолютну похибку.
Відносна похибка вимірювання ? відношення абсолютної похибки EMBED Equation.3 вимірювання до істинного чи умовно істинного (дійсного) значення вимірюваної фізичної величини або до результату вимірювання X.
Відносна похибка вимірювання виражається у відносних одиницях
EMBED Equation.3, (5)
або у відсотках
EMBED Equation.3.
З відносною похибкою вимірювання зв’язане кількісне визначення точності вимірювань, яку іноді оцінюють величиною, зворотною модулю відносної похибки. Наприклад, відносній похибці вимірювань EMBED Equation.3 відповідає точність вимірювань EMBED Equation.3, тобто точність вимірювання тим вища, чим менша відносна похибка. Проте цей термін використовується рідко і краще завжди говорити про відносну похибку вимірювання.
Одночасно при проведенні вимірювання обов’язково повинна обчислюватися його абсолютна похибка, бо вона потрібна для правильного запису результату вимірювання. Разом з тим, при необхідності провести порівняння точності результатів вимірювань, визначається відносна похибка вимірювань.
Показники якості вимірювань.
Для кількісної оцінки впливу повної похибки, а також її систематичної і випадкової складових на результат вимірювання, використовують показники якості вимірювань: точність, правильність, збіжність, відтворюваність.
Точність вимірювань звичайно характеризується відносною похибкою вимірювань: чим менша відносна похибка, тим вища точність вимірювань.
Правильність вимірювань ? це показник якості вимірювань, що відбиває близькість до нуля систематичних похибок у результатах вимірювань. Тобто правильність характеризує вплив систематичної похибки на результат вимірювання.
Збіжність вимірювань ? це показник якості вимірювань, що відбиває близькість між собою результатів вимірювань того самого розміру фізичної величини, які виконуються повторно тими самими методами вимірювань і засобами вимірювальної техніки в однакових умовах.
Таким чином, збіжність результатів вимірювань відображає близькість до нуля випадкової похибки.
Відтворюваність (або повторюваність у встановлених границях похибки) вимірювань визначається близькістю між собою результатів вимірювань того самого розміру фізичної величини, які отримують у різних містах і в різний час виконання експерименту, різними методами вимірювань і засобами вимірювальної техніки, але приводять до однакових умов виконання вимірювань (температури, тиску, вологості та інших впливних величин).
Збіжність і відтворюваність можуть бути оцінені кількісно дисперсією результатів вимірювань.
Невизначеність вимірювань
У вітчизняних нормативних документах для оцінювання точності вимірювань зберігається традиційний підхід, що ґрунтується на понятті "похибка вимірювань". Новий підхід рекомендується МКМВ, МОЗМ, Міжнародною електротехнічною комісією (МЕК) та іншими міжнародними організаціями. Цей підхід ґрунтується на оцінюванні точності вимірювань за допомогою поняття "невизначеність вимірювань" (або просто "невизначеність).
У відомій літературі з метрології та в будь-яких міжнародних документах нема досить переконливих обґрунтувань щодо відмови від терміна "похибка" і заміни його новим терміном "невизначеність". Більш того рекомендовані оцінки для відображення кількісних характеристик невизначеності мають або той самий, або дещо модифікований вигляд, як і для похибок, зберігаючи в основному фізичний зміст. Тому заміна вказаних термінів обумовлена не принципово якісними, фундаментальними обґрунтуваннями, а асоціативністю їх розуміння. Так, термін "похибка" асоціюється з визначеною величиною, а термін "невизначеність" ? з сумнівом, невпевненістю, що нібито більше відображає фізичний зміст результату вимірювання.
Невизначеність вимірювань ? це параметр, зв’язаний з результатами вимірювань, який характеризує розсіяння значень, що можуть бути обґрунтовано приписані вимірюваній величині.
Отже, невизначеність вимірювань означає сумнів відносно вірогідності результатів вимірювань.
Для кількісного представлення пропонується три її види: стандартна невизначеність (типи А і В), сумарна стандартна невизначеність і розширена невизначеність.
Стандартна невизначеність ? це невизначеність результату прямих вимірювань, яка виражена через середнє квадратичне відхилення.
За способом обчислення і представлення розрізняють два типи стандартної невизначеності: тип А і тип В.
Стандартна невизначеність типу А ? це невизначеність, яка обчислюється статистичними методами обробки результатів багаторазових вимірювань (спостережень).
Стандартна невизначеність типу В ? це невизначеність, яка обчислюється за деякою апріорною інформацією: даними попередніх вимірювань величин, що входять в рівняння; даними вимірювань, що ґрунтуються на досвіді експериментатора або загальних знаннях про поведінку відповідних об’єктів і засобів вимірювальної техніки, даними їх повірки, атестування і калібрування; невизначеності констант і довідкових даних тощо. Невизначеність усіх цих даних звичайно відображають границями відхилення результату вимірювання фізичної величини від оцінки її істинного значення. Тому невизначеність вимірювань типу В залежить від закону розподілу можливих значень вимірюваної величини.
Сумарна стандартна невизначеність ? це стандартна невизначеність результату непрямих вимірювань. Вона має фізичний зміст дисперсії результату непрямих вимірювань і обчислюється через дисперсії (квадрати стандартних невизначеностей) інших фізичних величин (аргументів), через які визначається шукана фізична величина .
Розширена невизначеність ? це величина, що визначає інтервал, у границях якого знаходиться більша частина результатів непрямих вимірювань, які з достатньою підставою можуть бути приписані вимірюваній величині. Розширена невизначеність вимірювань обчислюється через сумарну стандартну невизначеність.
Поняття й області використання ймовірнісних та статистичних характеристик похибок вимірювань
Наявність випадкових похибок призводить до того, що при повторних вимірюваннях того самого розміру фізичної величини, як би старанно і на якому б науковому рівні вони не виконувались, результати цих вимірювань будуть відрізнятися, а їх розсіяння (розкид) мати випадковий характер. При кожному окремому вимірюванні його випадкова похибка викликається численними причинами і урахувати їх всі при вимірюваннях неможливо. Оскільки за результатами вимірювань завжди приймаються конкретні рішення або робляться певні практичні висновки, то для підвищення їх обґрунтування виключно важливо вміти оцінювати випадкові похибки вимірювань.
Для оцінки випадкових похибок вимірювань, як випадкових процесів чи величин, використовується апарат або теорії ймовірностей, або математичної статистики. Тим самим вводиться відмінність між цими групами характеристик похибок вимірювань: імовірнісними і статистичними.
Імовірнісні характеристики похибки вимірювань ? це параметри функції розподілу ймовірностей похибки вимірювань, які відображають властивості генеральної сукупності похибок усіх результатів вимірювань, одержаних за даною методикою виконання вимірювань у відомих умовах. Вони є детермінованими величинами. Область використання ймовірнісних характеристик похибок вимірювань ? технічні вимірювання.
Статистичні характеристики похибки вимірювань ? випадкові величини, які являють собою оцінки ймовірнісних характеристик параметрів розподілу ймовірностей похибки вимірювань. Їх визначають експериментально по деякій скінченій кількості (серії, виборці) результатів вимірювань (а не з генеральної сукупності), і вони є предметом вивчення математичної статистики.
Статистичні характеристики лише наближаються до характеристик генеральної сукупності похибки вимірювань. Чим більше об’єм вибірки, тобто чим більша кількість вимірювань (спостережень) у серії, тим ближче обчислені статистичні характеристики до детермінованих імовірнісних характеристик генеральної сукупності, випадковими оцінками яких вони є. При нескінченній кількості вимірювань (спостережень) у серії, статистичні характеристики стають такими, що дорівнюють імовірнісним характеристикам, тобто детермінованими, а не випадковими величинами.
Отже, статистичні характеристики похибки вимірювань відображають ступінь близькості до істинного значення вимірюваної величини тільки того єдиного результату вимірювання, який обчислено за даними конкретної серії вимірювань. Область використання статистичних характеристик похибки вимірювань ? лабораторні (експериментальні) вимірювання.
Таким чином, імовірнісні характеристики похибки вимірювань справедливі для будь-якого результату вимірювання, а статистичні характеристики властиві конкретному результату вимірювання, одержаному для конкретного досліджуваного об’єкта за даних конкретних умов.
Систематична похибка опосередкованих вимірювань при нелінійній залежності
Підкреслимо одну важливу особливість результатів опосередкованих вимірювань при нелінійній залежності у порівнянні з результатами прямих багаторазових вимірювань. Якщо в результатах одноразових спостережень систематичні похибки вилучені, то математичне сподівання середнього арифметичного ряду прямих рівнорозсіяних спостережень дорівнює істинному значенню вимірюваної величини, тобто результати прямих виправлених спостережень вільні від систематичних похибок. На відміну від цього, математичне сподівання похибки результату опосередкованих вимірювань при нелінійній залежності, яка визначається певною формулою, не дорівнює нулю, тобто похибка результату такого опосередкованого вимірювання, поряд з випадковою складовою, має і систематичну складову. А це означає, що математичне сподівання результату опосередкованих вимірювань при нелінійній залежності не дорівнює істинному значенню вимірюваної величини, або інакше, що оцінка є зміщеною, якщо хоча будь-яка одна серед других похідних в не дорівнює нулю. Покажемо це.
Обчислимо математичне сподівання абсолютної похибки опосередкованих вимірювань EMBED Equation.3Y з урахуванням:
EMBED Equation.3
EMBED Equation.3.
У цьому виразі перша сума дорівнює нулю, оскільки EMBED Equation.3 за умовою проведення експерименту, а друга сума визначає систематичну похибку. Отже, якщо вимірювані величини корельовані між собою, то, враховуючи рівність
EMBED Equation.3,
для систематичної похибки результату опосередкованих вимірювань дістаємо
EMBED Equation.3
Оцінку коефіцієнта кореляції EMBED Equation.3 або визначають за експериментальними даними, або задають функціональною залежністю чи у вигляді матриці.
За умови, що вимірювані величини не корельовані, маємо
EMBED Equation.3
Тоді систематична похибка результату опосередкованих вимірювань
EMBED Equation.3.
Отже, опосередковані вимірювання при нелінійній залежності мають специфічну систематичну похибку, яка обумовлена ненульовими частинними похідними EMBED Equation.3.
Щоб вилучити цю систематичну похибку, треба в результат опосередкованих вимірювань, обчислений за формулою, ввести поправку П, яка дорівнює систематичній похибці за значенням і обернена їй за знаком, тобто EMBED Equation.3.
Опосередковані вимірювання при лінійній залежності вказаної вище специфічної систематичної похибки не мають, тому що для них EMBED Equation.3.
Результат і похибка опосередкованих вимірювань
Довірчі границі випадкової похибки і границі не вилученої систематичної похибки результату опосередкованого вимірювання з нелінійною залежністю визначають за певними формулами, підставляючи в останні замість коефіцієнтів EMBED Equation.3 відповідно перші похідні EMBED Equation.3.
Довірчу повну похибку результату опосередкованого вимірювання обчислюють певним чином.
Остаточний результат опосередкованих вимірювань записується у вигляді
EMBED Equation.3
деEMBED Equation.3 ? границі допустимої випадкової похибки опосередкованих вимірювань.
Формули для оцінки СКВ і результату опосередкованих вимірювань справедливі за умови, що відомі оцінки дисперсії (і СКВ) початкових величин. Значення коефіцієнта EMBED Equation.3 визначається для заданої довірчої ймовірності P, виходячи із закону розподілу результату опосередкованого вимірювання. Якщо закон розподілу результату опосередкованих вимірювань можна вважати нормальним, то для визначення EMBED Equation.3 (і довірчих границь EMBED Equation.3) використовується інтегральна функція нормованого нормального розподілу при великому числі вимірювань EMBED Equation.3. При малому числі EMBED Equation.3 нормально розподілених результатів спостережень EMBED Equation.3 слід користуватися розподілом Стьюдента з “ефективним” числом степенів вільності, що визначається виразом
EMBED Equation.3.
Якщо числа спостережень усіх аргументів однакові EMBED Equation.3, то
EMBED Equation.3.
При лінійній функціональній залежності опосередкованих вимірювань маємо EMBED Equation.3 і одержуємо приведені раніше формули для ефективного числа степенів вільності EMBED Equation.3.
Оскільки число EMBED Equation.3 звичайно є дробовим, то для пошуку величини EMBED Equation.3 за таблицею розподілу Стьюдента необхідно використовувати інтерполяцію.
Довірчі границі повної похибки опосередкованих вимірювань (з урахуванням випадкової і не вилученої систематичної складових похибки вимірювань) знаходять за відповідною методикою.
Отже, загальна методика статистичної обробки результатів опосередкованих вимірювань передбачає такий алгоритм:
1) вилучення відомих (виявлених) систематичних похибок з результатів вимірювань кожного аргументу;
2) перевірку відповідності реального розподілу результатів прямих вимірювань кожного аргументу нормальному закону за одним із критеріїв згоди. Якщо така відповідність підтверджується, то проводять перевірку надмірних похибок і їх вилучення з результатів вимірювань;
3) обчислення оцінок аргументів та їх похибок;
4) перевірку відсутності кореляції між результатами вимірювань аргументів попарно, при її наявності обчислюють відповідні коефіцієнти кореляції;
5) обчислення результату опосередкованого вимірювання;
6) обчислення довірчої випадкової похибки і загальної похибки результату опосередкованого вимірювання; при нелінійній залежності знаходять систематичну похибку опосередкованих вимірювань, обумовлену перехресними членами у рівнянні.
При прямих одноразових вимірюваннях початкових величин EMBED Equation.3 процедура визначення результату Y опосередкованих вимірювань зберігається такою самою, як і при багаторазових вимірюваннях. Проте при прямих одноразових вимірюваннях початкових величин EMBED Equation.3 для оцінки характеристик похибки опосередкованих вимірювань широко використовуються абсолютні і відносні значення похибок. Для визначення абсолютної похибки результату опосередкованих вимірювань використовують співвідношення, аналогічне за формою виразу без залишкового члена, а за абсолютною похибкою знаходять відповідні відносні похибки з рівності.
Формули обчислення абсолютних і відносних похибок опосередкованих вимірювань для тих функціональних залежностей, які часто зустрічаються в практиці, наведені в табл. 1. Якщо похибки є систематичними, то формули в табл. 1. використовують з урахуванням знаків похибок. Для випадкових похибок здійснюється підсумовування за модулем, тобто арифметичне підсумовування, причому за величину беруть границі допустимих похибок (максимальні значення).
Табл. 1. свідчить, що піднесення аргументу до цілого степеня значно збільшує, а добування цілого степеня аргументу зменшує похибки результату. Тому вимірювання величин, які у формулу входять у вигляді EMBED Equation.3 ? ціле додатне число), необхідно виконувати з більшою точністю, а вимірювання величин, у вигляді EMBED Equation.3, може здійснюватися з меншою точністю. Якщо результат опосередкованих вимірювань виражається через степеневу функцію аргументів, наприклад,
EMBED Equation.3,
то для відносної систематичної похибки одержимо
EMBED Equation.3,
а для оцінки “зверху”, тобто максимального значення відносної випадкової похибки
EMBED Equation.3
Таблиця 1.
Проте така оцінка дає завищені результати і її застосування доцільно при 2 або 3 складових похибки. При більшому числі складових випадкової похибки опосередкованих вимірювань (за числом аргументів m), абсолютну випадкову похибку результату опосередкованих вимірювань слід обчислювати за правилами підсумовування незалежних випадкових величин, тобто геометрично
EMBED Equation.3.
Величину EMBED Equation.3 називають середнім квадратичним значенням абсолютної випадкової похибки опосередкованих вимірювань.
Тоді СКЗ відносної випадкової похибки опосередкованих вимірювань
EMBED Equation.3.
При роздільній оцінці систематичних і випадкових похибок результату опосередкованих вимірювань необхідно мати на увазі таке. Очевидно, що оцінити систематичну похибку результату опосередкованих вимірювань неможливо, не знаючи оцінок систематичних похибок початкових величин EMBED Equation.3. Але якщо вони відомі, то їх необхідно вилучити з результатів прямих вимірювань EMBED Equation.3, а потім оцінити результат опосередкованого вимірювання за цими виправленими значеннями EMBED Equation.3. Водночас така оцінка систематичної похибки може бути проведена після закінчення експерименту. Тоді її у вигляді поправки необхідно врахувати в остаточному результаті опосередкованого вимірювання. Оцінка систематичної похибки може використовуватися також під час підготовки до експерименту, як орієнтовна оцінка. Наприклад, якщо припустити, що похибка результату опосередкованого вимірювання визначається тільки похибкою ЗВТ при вимірюванні величин EMBED Equation.3, причому в цих ЗВТ переважаючою є систематична похибка (випадковою похибкою можна знехтувати), то на підставі оцінки систематичної похибки за певною формулою при (провівши формальну заміну EMBED Equation.3, EMBED Equation.3) можна вибрати ЗВТ з такими границями допустимих систематичних похибок, щоб похибка результату опосередкованих вимірювань величини Y не перевищувала заданого значення.
Оцінка результатів і похибок сумісних та сукупних вимірювань
Загальною ознакою сумісних і сукупних вимірювань, відповідно до їх визначення є те, що значення шуканих величин визначають, розв’язуючи систему рівнянь, які зв’язують шукані величини з деякими іншими величинами, вимірюваними прямими або опосередкованими методами, причому вимірюють декілька комбінацій значень цих величин. Вимірювання, проведені для кожної комбінації, дозволяють одержати одне рівняння, а сукупність цих рівнянь для всіх комбінацій являє собою систему рівнянь, в яку входять також усі значення шуканих величин. Цю систему рівнянь, запишемо для стислості записів у вигляді
EMBED Equation.3,
деEMBED Equation.3 ? значення шуканих величин,;
EMBED Equation.3 ? значення величин, вимірюваних прямими або опосередкованими методами в q-му досліді,;
n ? число дослідів;
k ? число величин, які вимірюються в кожному досліді;
m ? число шуканих величин.
Рівняння, як і рівняння, за формою однакові для сумісних і сукупних вимірювань. Їх відмінністю є тільки фізична суть шуканих величин.
Якщо EMBED Equation.3 є значеннями тієї самої фізичної величини (наприклад, масами гир певного набору або довжинами лінійних мір), то вимірювання сукупні. Якщо ж EMBED Equation.3 ? значення різних фізичних величин (наприклад, опору і температури), то вимірювання сумісні. Ще раз підкреслимо, що такий поділ вимірювань дуже умовний, але він традиційно існує.
Після проведення n дослідів одержують n комбінацій значень вимірюваних величин EMBED Equation.3. Підставляючи EMBED Equation.3 у початкову систему і проводячи необхідні перетворення, одержимо систему рівнянь
EMBED Equation.3
Рівняння містять у собі шукані величини EMBED Equation.3 і числові коефіцієнти EMBED Equation.3. Для визначення m невідомих значень шуканих величин необхідно мати m рівнянь. Тоді результати вимірювань величин EMBED Equation.3 і довірчі границі їх похибок можна знайти за методиками обробки результатів опосередкованих вимірювань. Проте, з метою зменшення похибок результатів вимірювань, дослідів проводять дещо більше, ніж число m невідомих величинEMBED Equation.3/
Оскільки точність вимірювання величин EMBED Equation.3 обмежена, то умовні рівняння одночасно не перетворюються в тотожності при жодних значеннях шуканих величин EMBED Equation.3, а отже, не виникає можливості визначення їх істинних значень. Тому задача зводиться до знаходження оцінок шуканих величин EMBED Equation.3, найбільш наближених до істинних значень. Позначимо такі оцінки EMBED Equation.3. Якщо значення EMBED Equation.3 підставити в умовні рівняння, то їх ліві частини, в загальному випадку, будуть відрізнятися від правих частин. Такі рівняння і названі умовними. Для одержання тотожності введемо в праві частини умовних рівнянь деякі величини, які називають залишковими похибками умовних рівнянь або відхилами. Звідси маємо
EMBED Equation.3.
Для розв’язання системи умовних рівнянь застосовується метод найменших квадратів (МНК), згідно з яким оцінки EMBED Equation.3 вибирають так, щоб мінімізувати суму квадратів відхилів
EMBED Equation.3.
З рівнянь випливає, що точність сукупних і сумісних вимірювань залежить від співвідношення числа шуканих величин m і числа умовних рівнянь n. Чим значніша умова, тим точніше результати обробки. Якщо m і n близькі, то результати обробки визначаються з грубими похибками.
Довірчі інтервали для істинних значень усіх вимірюваних величин одержують за розподілом Стьюдента при числі степенів вільності.
Якщо при сукупних і сумісних вимірюваннях умовні рівняння нелінійні, то застосовують їх лінеаризацію.
Таким чином, методика обробки результатів сукупних і сумісних вимірювань така:
1. Записують систему умовних рівнянь при EMBED Equation.3 підстановкою експериментальних даних у рівняння початкової залежності.
2. Систему умовних рівнянь приводять до нормального вигляду.
3.Визначають оцінки шуканих величин EMBED Equation.3, розв’язуючи систему нормальних рівнянь, для чого використовують один із методів:
а) метод, який ґрунтується на послідовному виключенні невідомих (метод Гаусса);
б) метод із застосуванням визначника.
4. Перевіряють правильність визначення оцінок шуканих величин за рівняннями.
5. Знаходять оцінку СКВ результатів вимірювань шуканих величин EMBED Equation.3 за певними формулами.
6. Визначають довірчі інтервали для всіх вимірюваних величин на підставі розподілу Стьюдента при числі степенів вільності їх вимірювань.