Реферат
“ТВЕРДІСТЬ ВОДИ. КРУГООБІГ КАРБОНУ”
Твердість води
Загальна твердість води переважно зумовлюється наявністю в ній гідрокарбонатів, хлоридів, сульфатів та інших сполук кальцію і магнію. Загальна твердість поділяється на карбонатну (усувну) і постійну (неусувну).
Карбонатна твердість зумовлена наявністю у воді розчинних бікарбонатів кальцію і магнію, які при кип'ятінні води розкладаються на вуглекислоту і нерозчинні монокарбонати. Останні є причиною утворення накипу на стінках парових котлів, стерилізаторів, радіаторів, самоварів, чайників та інших водонагрівних приладів. Тому в медичній практиці інструменти багаторазового використання кип'ятять у дистильованій воді, рідше - у чистій дощовій воді.
Карбонатна твердість часто співпадає з усувною твердістю. При кип'ятінні усувається переважно та частина карбонатної твердості, яка залежить від гідрокарбонату кальцію. При великій кількості у воді гідрокарбонату магнію різниця між карбонатною і усувною твердістю буває досить значною.
Постійною твердістю води називають ту, яка залишається після тривалого кип'ятіння води і зумовлюється наявністю у ній хлоридів, сульфатів, нітратів і фосфатів кальцію і магнію.
Твердість води оцінюють у мг-екв/дм3. 1 мг-екв/дм:і твердості відповідає 20,0 мг/дма Са++ або 12,2 мг/дм3 М§++. Воду з твердістю до 3,5 мг-екв/дм3 називають м'якою, від 3,5 до 7 — середньої твердості, від 7 до 14 - твердою, понад 14 мг-екв/дм3 - дуже твердою.
При підвищенні твердості води погіршується розварювання м'яса, бобових, погано настоюється чай і псується його смак, збільшується витрата мила при пранні, оскільки піна утворюється лише після того, як увесь кальцій і магній будуть зв'язані (на зв'язування 10 г кальцію необхідно 166 г мила). Тверда вода створює незручності й під час купання, миття голови внаслідок осідання кальцієвих і магнієвих солей жирних кислот на поверхні тіла. Волосся при цьому стає жорстким, шкіра - грубою. Цього можна уникнути сполоснувши волосся слабким розчином оцту. У осіб з чутливою, тонкою шкірою може настати подразнення шкіри.
При різкому переході від вживання м'якої води до твердої, а особливо, коли у воді є сульфати магнію, що трапляється в туристичних або експедиційних умовах, при зміні місця проживання, можуть виникати тимчасові диспептичні явища. Роль твердої води в появі й розвитку нирковокам'яної хвороби достеменно не доведено.
Під час проведення протягом останніх років численних епідеміологічних досліджень в Англії, США, Японії та інших країнах було виявлено зворотну залежність між рівнем твердості води і смертністю від серцево-судинних захворювань. Механізм цього явища досі не з'ясовано.
Деякі автори вважають, що вода є частковим джерелом кальцію для організму людини. Справа в тому, що кальцій багатьох харчових продуктів засвоюється лише на 30 %, тоді як кальцій питної води — на 90 %. Слід відзначити, що овочі, зварені у м'якій воді, втрачають велику кількість кальцію, а у твердій воді - збагачуються кальцієм за рахунок осідання його на поверхні овочів.
Гранична норма твердості води не повинна перевищувати 7, а в окремих випадках - 10 мг-екв/дм3. При вживанні маломінералізованої води загальна твердість її повинна становити не менше 1,5 мг-екв/дм3. Вода, що не містить солей кальцію і магнію, неприємна на смак.
Кругообіг карбону в природі
Карбон (лат. Carboneum), С - хімічний елемент IV групи періодичної системи Менделєєва. Відомі два стабільних ізотопи 12 С(98,892 %) і 13С (1,108%).
Середній вміст карбону в земній корі 2,3*10-2 % по масі (1*10 –2 в ультраосновних, 1*10 –2 в основних, 2*10 –2 в середніх, 3*10 –2 в кислих гірських породах). Карбону нагромаджується у верхній частині земної кори (біосфері): в живій речовині 18 % карбону, в деревині 50 %, в кам'яному вугіллі 80 %, в нафті 85 %, антрациті 96 %. Означає частина карбону літосфери зосереджена у вапняках і доломіті.
Число власних мінералів карбону - 112; виключно велике число органічних сполук карбону - вуглеводородів і їх похідних.
З накопиченням карбону в земній корі пов'язане накопичення і багатьох інших елементів, які осідають у вигляді нерозчинних карбонатів і т.д.
У порівнянні зі середнім вмістом в земній корі людство у виключно великих кількостях витягує карбон з надр (вугілля, нафта, природний газ), так як ці викопні основні джерела енергії.
Карбон широко поширений також в космосі; на Сонці він займає 4-е місце після гідрогену, гелію і оксигену.
Відомі чотири кристалічні модифікації карбрну: графіт, алмаз, карбін і лонсдейліт. Графіт - сіро-чорна, непрозора, жирна на дотик, дуже м'яка маса з металевим блиском. При кімнатній температурі і нормальному тиску (0,1 Мн/м2, або 1кгс/см2) графіт термодинамично стабільний. Алмаз - дуже тверда, кристалічна речовина. Кристали мають кубічні межацентрировані ґрати: а=3,560(. При кімнатній температурі і нормальному тиску алмаз метастабільний. Помітне перетворення алмаза в графіт спостерігається при температурах вище за 1400°С у вакуумі або в інертній атмосфері. При атмосферному тиску і температурі біля 3700°С графіт переганяється. Рідкий карбон може бути отриманий при тиску вище за 10,5 Мн/м2 (1051 кгс/см2) і температурах вище за 3700(З. Для твердого вуглеводу (кокс, сажа, деревне вугілля) характерно також стан з неврегульованою структурою “аморфний" вуглевод, який не являє собою самостійної модифікації; в основі його будови лежить структура мелкокристаллического графіту. Нагрівання деяких різновидів “аморфного" вуглеводу вище за 1500-1600(З без доступу повітря викликає їх перетворення в графіт. Фізичні властивості “аморфний" вуглеводу дуже сильно залежать від дисперсність часток і наявності домішок. Щільність, теплоємність, теплопровідність і електропровідність “аморфний" вуглеводу завжди вище, ніж графіту. Карбин отриманий штучно. Він являє собою мелкокристаллический порошок чорного кольору (щільність 1,9 - 2 г/см3). Побудований з довгих ланцюжків атомів С, укладених паралельно один одному. Лонсдейліт знайдений в метеоритах і отриманий штучно; його структура і властивості остаточно не встановлені.
Конфігурація зовнішньої оболонки атома карбону 2s22p2 . Для карбону характерне утворення чотирьох ковалентних зв'язків, зумовлене збудження зовнішньої електронної оболонки до стану 2sp3 . Тому карбон здатний в рівній мірі як притягати, так і віддавати електрони. Хімічний зв'язок може здійснюватися за рахунок sp3-, sp2- і sp- гібридних орбіталей, яким відповідають координаційні числа 4,3 і 2. Число валентних електронів карбону і число валентних орбіталей однаково; це одна з причин стійкості зв'язку між атомами карбону.
Унікальна здатність атомів карбону сполучатися між собою з утворенням міцних і довгих ланцюгів і циклів призвела до виникнення величезного числа різноманітних з'єднань карбону, що вивчаються органічною хімією.
У сполуках карбон проявляє ступені окислення -4; +2; +4. Атомний радіус 0,77Á, ковалентні радіуси 0,77Á, 0,67Á, 0,60Á відповідно в одинарному, подвійному і потрійному зв'язках; іонної радіус С4- 2,60Á, С4+ 0,20Á. При звичайних умовах карбон хімічно інертний, при високих температурах він сполучається з багатьма елементами, виявляючи сильні відновні властивості.
Всі форми карбону стійкі до лугів і кислот і повільно окислюються тільки дуже сильними окислювачами (хромова суміш, суміш концентриров. HNO3 і KCIO3 і інш.). “Аморфний" карбон реагує з фтором при кімнатній температурі, графіт і алмаз - при нагріванні. Безпосередньо сполука карбону з хлором відбувається в електричній дузі; з бромом і йодом карбон не реагує, тому численні карбону галогеніди синтезують непрямим шляхом. З оксигалогенидів загальної формули COX2 (де Х - галоген) найбільш відома хлорокис COCI2 (фосген).
При температурах вище за 1000°С карбон взаємодіє з багатьма металами, даючи карбіди. Всі форми карбону при нагріванні відновлюють оксиди металів з утворенням вільних металів (Zn, Cd, Cu, Pb і інш.) або карбідів (CaC2, Mo2C, WC, TaC і інш.). Карбон реагує при температурах вище за 600 - 800°С з водяною парою і оксидои карбону (IV) - вуглекислим газом
Всі форми карбону нерозчинні в звичайних неорганічних і органічних розчинниках, але розчиняються в деяких розплавлених металах (наприклад, Fe, Ni, Co).
Карбон визначається тим, що понад 90 % всіх первинних джерел споживаної в світі енергії припадає на органічне паливо, очолююча роль якого збережеться і на найближчі десятиріччя, незважаючи на інтенсивний розвиток ядерної енергетики. Тільки біля 10% палива, що добувається використовується як сировина для основного органічного синтезу і нафтохімічного синтезу, для отримання пластичної маси і інш.
Карбон - найважливіший біогенний елемент, що складає основу життя на Землі, структурна одиниця величезного числа органічних сполук, що беруть участь в побудові організмів і забезпеченні їх життєдіяльності (біополімери, а також численні низькомолекулярні біологічно активні речовини - вітаміни, гормони, медіатори і інш.). Значну частину необхідної організмам енергії утвориться в клітках за рахунок окислення карбону. Виникнення життя на Землі розглядається в сучасній науці як складний процес еволюції карбонних сполук.
Унікальна роль карбону в живій природі зумовлена його властивостями, якими в сукупності не володіє жоден інший елемент періодичної системи. Між атомами карбону, а також між карбоном і іншими елементами утворяться міцні хімічні зв'язки, які, однак, можуть бути розірвані в порівняно м'яких фізіологічних умовах (ці зв'язки можуть бути одинарними, подвійними і потрійними). Здатність карбону утворювати 4 рівнозначні валентні зв'язки з іншими атомами. Карбон створює можливість для побудови вуглецевих скелетів різних типів - лінійних, розгалужених, циклічних. Показово, що усього три елементи - С, О, Н - становлять 98 % загальної маси живих організмів. Цим досягається певна економічність в живій природі: при практично безмежній структурній різноманітності карбонних сполук невелике число типів хімічних зв'язків дозволяє на багато скоротити кількість ферментів, необхідних для розщеплення і синтезу органічних речовин. Особливості будови атома карбону лежить в основі різних видів ізомерії органічних сполук (здатність до оптичної ізомерії виявилася такою, що вирішує в біохімічній еволюції амінокислот, вуглеводів і деяких алкалоїдів).
Згідно з гіпотезою А. І. Опаріна, перші органічні сполуки на Землі мали абіогенне походження. Джерелами карбону служили (СН4)і ціанистий гідроген (HCN), що містилися в первинній атмосфері Землі. З виникненням життя єдиним джерелом неорганічного карбону, за рахунок якого утвориться вся органічна речовина біосфери, є карбону двоокис (СО2), що знаходиться в атмосфері, а також розчинений в природних водах у вигляді НСО3 . Найбільш могутній механізм засвоєння (асиміляція) карбону (в формі СО2) - фотосинтез - здійснюється повсюдно зеленими рослинами. На Землі існує і еволюційне більш древній спосіб засвоєння СО2 шляхом хемосинтезу; в цьому випадку мікроорганізми - хемосинтетики використовують не променисту енергію Сонця, а енергію окислення неорганічних сполук. Більшість тварин споживають карбон з їжею у вигляді вже готових органічних сполук. У залежності від способу засвоєння органічних сполук прийнято розрізнювати автотрофні організми і гетеротрофні організми. Застосування для біосинтез білка і інших поживних речовин мікроорганізмів, що використовують як єдине джерело карбону, вуглеводороди нафти, - одна з важливих сучасних науково - технічних проблем.
Крім стабільних ізотопів карбону, в природі поширений радіоактивний 14С (в організмі людини його міститься біля 0,1 мккюри). З використанням ізотопів карбону в біологічних і медичних дослідженнях пов'язані багато великих досягнень у вивченні обміну речовин і кругообігу карбону в природі. Так, за допомогою радіокарбоновій мітки була доведена можливість фіксації Н14СО3 рослинами і тканинами тварин, встановлена послідовність реакції фотосинтезу, вивчений обмін амінокислот, прослідилися шляхи біосинтез багатьох біологічно активних сполук і т. д. Застосування 14С сприяло успіхам молекулярної біології у вивченні механізмів біосинтезу білка і передачі спадкової інформації. Визначення питомої активності 14С к органічних залишках, які містять карбон дозволяє судити про їх вік, що використовується в палеонтології і археології.