Минералогия
 
Кристаллическое вещество и его строение.
Кристаллы - твердые тела, имеющие многогранную форму, а слагающие их частицы (атомы, молекулы, ионы) расположены закономерно. Поверхность кристаллов ограничена плоскостями, которые носят название граней. Места соединения граней называются рёбрами, точки пересечения которых называются вершинами или углами. Грани, рёбра и вершины кристаллов связаны зависимостью: число граней + число вершин = число рёбер + 2. В большинстве случаев кристаллические вещества не имеют ясно огранённой формы, хотя и обладают закономерным внутренним кристаллическим строением. Установлено, что кристаллы построены из материальных частиц - ионов, атомов или молекул, геометрически правильно расположенных в пространстве.
Свойства кристаллических веществ. Основные свойства следующие:
1. Анизотропность (т.е. неравносвойственность) . Анизотропными называются такие вещества, которые имеют одинаковые свойства в параллельных направлениях и неодинаковые - в непараллельных. Различные физические свойства кристаллов, такие, как теплопроводность, твердость, упругость, распространение света и др., изменяются с изменением направления. В противоположность анизотропным, изотропные тела имеют одинаковые свойства во всех направлениях.
2. Способность самоограняться. Этой специфической особенностью обладают только кристаллические вещества. При свободном росте кристаллы ограничиваются плоскими гранями и прямыми рёбрами, принимая многогранную форму.
3. Симметрия. Симметрией называется закономерная повторяемость в расположении предметов или их частей на плоскости или в пространстве. Все кристаллы являются телами симметричными Строение кристаллической решётки. Материальные частицы (атомы, ионы, молекулы) в кристаллическом веществе размещаются не хаотично, а в определённом строгом порядке. Они расположены параллельными рядами, причём расстояния между материальными частицами этих рядов одинаковы. Эта закономерность в строении кристаллов выражается геометрически в виде пространственной решётки, являющейся как бы скелетом вещества.
Представить пространственную решётку можно как бесконечно большое число одинаковых по форме и размеру параллелепипедов, сдвинутых относительно другого и сложенных так, что они выполняют пространство без промежутков. Вершины параллелепипедов, в которых находятся атомы, ионы или молекулы, называются узлами пространственной решётки, а прямые линии, проведённые через них, - рядами. Любая плоскость, которая проходит через три узла пространственной решётки (не лежащих на одной прямой) , называется плоской сеткой. Элементарный параллелепипед, в вершинах которого находятся узлы решётки, носит название ячейки данной пространственной решётки.
Таким образом, кристаллическое вещество имеет строго закономерное (ретикулярное) строение.
Физические свойства минералов, как отражение их внутреннего строения.
Все важнейшие свойства кристаллических веществ являются следствием их внутреннего закономерного строения. Так, например, анизотропность кристаллов можно легко уяснить, если вести измерение каких-либо свойств в различных направлениях. Особенно чётко анизотропия выявляется в оптических свойствах кристаллов, на чём основан один из важнейших методов их изучения, применяемый в минералогии и петрографии.
Способность кристаллов самоограняться также является естественным следствием их внутреннего строения. Грани кристаллов соответствуют плоским сеткам, рёбра - рядам, а вершины углов - узлам пространственной решётки. Пространственная решётка имеет бесконечное множество плоских сеток, рядов и узлов. Но реальным граням могут соответствовать лишь те плоские сетки решётки, которые имеют наибольшую ретикулярную плотность, т.е. на которых на единицу площади будет приходиться наибольшее число составляющих её частиц (атомов, ионов) . Таких плоских сеток сравнительно немного, отсюда и кристаллы имеют вполне определённое число граней.
Структура кристалла, т.е. расположение в нём отдельных частиц, является симметричной. Следовательно и сам кристалл будет обладать плоскостями и осями симметрии.
Образование и рост кристаллов.
Кристаллы возникают при переходе вещества из любого агрегатного состояния в твёрдое. При этом частицы могут оказаться относительно друг друга в беспорядочном положении или может возникнуть закономерность их расположения. В первом случае мы будем иметь аморфное вещество, а во втором кристаллическое.
Кристаллы могут образовываться при переходах вещества из газообразного состояния в твёрдое, из жидкого в твёрдое и из твёрдого в твёрдое.
Образование кристаллов серы, нашатыря, борной кислоты и др. происходит при охлаждении газов в кратерах вулканов и фумаролах. Наиболее обычным примером является образование снега.
Особенно широко распространено в природе и технике образование кристаллов при переходе вещества из жидкого состояния в твёрдое. Здесь надо различать два случая образования кристаллов: из расплава и из раствора. Примером первого случая является кристаллизация магмы. Магма огненно - жидкий силикатный расплав, содержащий различные химические соединения, в том числе и газы. При медленном остывании магмы образуется множество центров кристаллизации, кристаллы растут, мешая друг другу, и в результате образуется кристаллическая зернистая порода.
Примерами образования кристаллов из растворов могут служить образование льда и выпадение различных солей.
При переходе из твёрдого состояния в твёрдое следует отметить два случая. При одних процессах кристаллическое вещество может образовываться из аморфного. Так, с течение времени закристаллизовываются стёкла и содержащие стёкла вулканические породы. Другой процесс перекристаллизация: структура одних веществ разрушается и образуются новые кристаллы с иной структурой. Все метаморфические породы являются в той или иной степени перекристаллизованными. Под влиянием температуры, давления и других факторов известняк переходит в мрамор. Явление перекристаллизации широко распространено в природе.
Рост кристаллов.
Маленькие кристаллики обычно имеют большое число граней, но в процессе роста некоторые грани зарастают. Нормали к граням есть направления их роста, т.е. в процессе роста грани перемещаются параллельно самим себе. Не все грани растут с одинаковой скоростью. Те из них, которые растут быстрее, уменьшаются в размерах и могут исчезнуть, поэтому форма кристалла в процессе его роста изменяется.
Иногда встречаются так называемые зональные кристаллы. Зональность их может быть обусловлена перерывами в кристаллизации или какими-либо примесями и окрашивающими веществами, которые присутствовали в определённые моменты кристаллизации.
Виды симметрии.
Классификация кристаллов по виду симметрии. Симметрия есть закономерная повторяемость в расположении предметов или их частей на плоскости или в пространстве. В природе симметрия проявляется в большом разнообразии и особенно характерна для кристаллов. Она является их важнейшим и специфическим свойством, отражающим закономерность внутреннего строения.
Рассмотрим элементы симметрии.
1. Плоскость симметрии. Это воображаемая плоскость, которая делит фигуру на две равные части так, что одна из частей является зеркальным отражением другой. Плоскость симметрии обозначается буквой Р. Если плоскостей симметрии в данном кристалле несколько, то перед обозначением плоскости ставится их число, например - 3Р, три плоскости симметрии. В кристаллах могут быть одна, две, три, четыре, пять, шесть, семь и девять плоскостей симметрии. Многие кристаллы вообще не имеют ни одной плоскости симметрии.
2. Центр симметрии. Центром симметрии называется такая точка внутри фигуры, при проведении через которую любая прямая встретит на равном от ней расстоянии одинаковые и обратно расположенные части фигуры. Центр симметрии обозначается буквой С (или i) . Если каждая грань кристалла имеет себе равную, хотя и обратно расположенную грань, то данный кристалл обладает центром симметрии. Некоторые кристаллы могут не иметь центра симметрии.
3. Оси симметрии. Осью симметрии называется воображаемая прямая, при повороте вокруг которой всегда на один и тот же угол происходит совмещение равных частей фигуры. При повороте на 360° совмещение граней в разных кристаллах возможно два, три, четыре или шесть раз (т.е. при каждом повороте на 180,120,90 и 60°) . Ось симметрии обозначается буквой L, порядок оси показывает, сколько раз при повороте на 360° произойдёт совмещение каждой из граней. Так в кристаллах возможны оси второго L2, третьего L3, четвёртого L4 и шестого L6 порядков. Оси симметрии L3, L4, L6 называются осями симметрии высшего порядка. Оси симметрии питого и выше шестого порядка в силу закономерности внутреннего строения кристаллов невозможны. Ось симметрии первого порядка L1 показывает, что для совмещения фигуры с её начальным положением нужно сделать поворот на 360°; это соответствует полному отсутствию симметрии, ибо любой предмет при повороте на 360° вокруг любого реального направления совместится с самим собой.
4. Инверсионные оси симметрии. Инверсион