Интеграл по комплексной переменной.
Определение 1: Кривая Г называется гладкой ,если она имеет непрерывно изменяющуюся касательную.
Определение 2: Кривая называется кусочно-гладкой ,если она состоит из конечного числа гладких дуг.
Основные свойства : Пусть на комплексной плоскости Z задана кусочно-гладкая кривая С длиной ?, используя параметрическое задание кривой С зададим ??t??и?? (t), где ??и???являются кусочно-гладкими кривыми от действительной переменной t. Пусть ?<= t<=???причем ??и ??могут быть бесконечными числами .?
?Пусть?? и ??удовлетворяют условию : [?‘(t)]2 + [?‘(t)]2 ? 0. Очевидно, что задание координат ? =??t??и???? (t), равносильно заданию комплексной функции ? (t)= ??(t) ??i?(t).
Пусть в каждой точке ? (t) кривой С определена некоторая функция f (? ). Разобьем кривую С на n – частичных дуг точками деления ?0 , ?1 , ?2 , …, ??n-1 соответствующие возрастающим значениям параметра t, т.е. t0, t1, …, t i+1 > t i.
?? i =? i – ? i-1. Составим интегрируемую функцию S = ?f (?*)?? i . (1)где ?*– производная точки этой дуги.
Если при стремлении max |?? i |? 0 существует предел частных сумм не зависящий ни от способа разбиения кривой С на частичные дуги, ни от выбора точек ? i , то этот предел называется интегралом от функции f (? ) по кривой С.
(2)
f (?i* ) = u (Pi*) + iv (Pi*) (3)
где ?? i = ???(t) ??i??(t) (??(t) и??(t) - действительные числа)
Подставив (3) в (1) получим :
(4)
Очевидно, что (4) состоит из суммы двух частных сумм, криволинейных интегралов действительной переменной. Переходя в (4) к пределу при ?? и ?? ??0 и предполагая, что данные пределы существуют, получаем :
(5)
Заметим, что для существования криволинейного интегралов, входящих в (5), а тем самым и для существования интеграла (2) достаточно кусочной непрерывности функций u и v. Это означает, что (2) существует и в случае неаналитичности функции f (? ).
Сформулируем некоторые свойства интеграла от функции комплексной переменной. Из равенства (5) следуют свойства :
О ограниченности интеграла.
При этом z = ? (? ).
7.) Пусть Cp – окружность радиуса ?, с центром в точке Z0. Обход вокруг контура Cp осуществляется против часовой стрелки. Cp : ? = Z0 + ??ei?, 0 ? ? ? 2?, d? = i??ei? d? .
Кусочно-гладкую замкнутую кривую будем называть замкнутым контуром, а интеграл по замкнутому контуру – контурным интегралом.
ТЕОРЕМА КОШИ.
В качестве положительного обхода контура выберем направление при котором внутренняя область, ограниченная данным замкнутым контуром остается слева от направления движения :
Для действительной переменной имеют место формулы Грина. Известно, что если функции P(x, y) и Q(x, y) являются непрерывными в некоторой заданной области G, ограниченны кусочно-гладкой кривой С, а их частные производные 1-го порядка непрерывны в G, то имеет место формула Грина:
( 8 )
ТЕОРЕМА : Пусть в односвязной области G задана аналитическая функция f(Z), тогда интеграл от этой функции по замкнутому контуру Г целиком лежащему в G , равен нулю.
Доказательство : из формулы (5) следует:
Т.к. f(? ) аналитическая всюду, то U(x, y), V(x, y) - непрерывны в области, ограниченной этим контуром и при этом выполняются условия Коши-Римана. Используя свойство криволинейных интегралов:
Аналогично :
По условию Коши-Римана в последних равенствах скобки равны нулю, а значит и оба криволинейных интеграла равны нулю. Отсюда :
ТЕОРЕМА 2 (Вторая формулировка теоремы Коши) : Если функция f(?) является аналитической в односвязной области G, ограниченной кусочно-гладким контуром C, и непрерывна в замкнутой области G, то интеграл от такой функции по границе С области G равен нулю.
TEOPEMA 3 (Расширение теоремы Коши на многосвязную область) :
Пусть f (?) является аналитической функцией в многосвязной области G, ограниченной извне контуром С0, а изнутри контурами С1, С2, .. ,Сn (см. рис.). Пусть f (?) непрерывна в замкнутой области G, тогда :
, где С – полная граница области G, состоящая из контуров С1, С2, .. , Сn. Причем обход кривой С осуществляется в положительном направлении.
Неопределенный интеграл.
Следствием формулы Коши является следующее положение : пусть f(Z) аналитична в односвязной области G, зафиксируем в этой области точку Z0 и обозначим:
интеграл по какой-либо кривой, целиком лежащей в области G, содержащей Z0 и Z, в силу теории Коши этот интеграл не зависит от выбора кривой интегрирования и является однозначной функцией Ф(Z). Аналитическая функция Ф(Z) называется первообразной от функции f(Z) в области G, если в этой области имеет место равенство : Ф? (Z) = f( Z).
Определение: Совокупность всех первообразных называется неопределенным интегралом от комплексной функции f(Z). Так же как и в случае с функцией действительного переменного имеет место равенство :

( 9)
Это аналог формулы Ньютона-Лейбница.
Интеграл Коши. Вывод формулы Коши.
Ранее была сформулирована теорема Коши, которая позволяет установить связь между значениями аналитической функции во внутренних точках области ее аналитичности и граничными значениями этой функции.
Пусть функция f(Z) – аналитическая функция в односвязной области G, ограниченной контуром С. Возьмем внутри этой области произвольную точку Z0 и в области G вокруг этой точки построим замкнутый контур Г. Рассмотрим вспомогательную функцию ? (Z). Эта функция аналитична в области G всюду, кроме точки Z=Z0. Проведем контур ? с достаточным радиусом, ограничивающий точку Z0, тогда функция будет аналитична в некоторой двусвязной области, заключенной между контурами Г и ?. Согласно теореме Коши имеем :
По свойствам интегралов :
(2 )
Так как левый интеграл в (2) не зависит от выбора контура интегрирования, то и правый интеграл также не будет зависеть от выбора контура. Выберем в качестве ? окружность ?? с радиусом ? . Тогда:
(3)
Уравнение окружности ?? : ? = Z0 + ?ei????????? (4)
Подставив (4) в (3) получим :
( 5 )

( 6 )

(7)
Устремим ??? 0, т.е. ?? 0.
Тогда т.к. функция f(?) аналитична в точке Z=Z0 и всюду в области G, а следовательно и непрерывна в G, то для всех ?>0 существует ?>0, что для всех ? из ?–окрестности точки Z0 выполняется | f(?) – f(Z0) | < ?.
(8)
Подставив ( 7) в ( 6) с учетом ( 8) получаем :
Подставляя в ( 5) и выражая f(Z0) имеем :
(9)
Это интеграл Коши.
Интеграл, стоящий в (9) в правой части выражает значение аналитической функции f(?) в некоторой точке Z0 через ее значение на произвольном контуре ? , лежащем в области аналитичности функции f(?) и содержащем точку Z0 внутри.
Очевидно, что если бы функция f(?) была аналитична и в точках контура С, то в качестве границы ? в формуле (9) можно было использовать контур С.
Приведенные рассуждения остаются справедливыми и в случае многосвязной области G.
Следствие : Интеграл Коши, целиком принадлежащий аналитической области G имеет смысл для любого положения Z0 на комплексной плоскости при условии, что эта точка есть внутренней точкой области Г. При этом если Z0 принадлежит области с границей Г, то значение интеграла равно (9), а если т. Z0 принадлежит внешней области, то интеграл равен нулю :
При Z0 ? Г указанный интеграл не существует.
Интегралы, зависящие от параметра.
Рассматривая интеграл Коши, видим, что подинтегральная функция зависит от 2-х комплексных переменных : переменной интегрирования ? и Z0. Таким образом интеграл Коши может быть рассмотрен как интеграл, зависящий от параметра, в качестве которого выбираем точку Z0.
Пусть задана функция двух комплексных переменных ? (Z, ? ), причем Z= x + iy в точке, принадлежащей некоторой комплексной плоскости G. ?= ?+ i?? ? С. (С - граница G).
Взаимное расположение области и кривой произвольно. Пусть функция ? (Z, ? ) удовлетворяет условиям : 1) Функция для всех значений ???? С является аналитической в области G. 2) Функция ? (Z, ? ) и ее производная ????? являются непрерывными функциями по совокупности переменных Z и ? при произвольном изменении области G и переменных на кривой С. Очевидно, что при сделанных предположениях :
Интеграл существует и является функцией комплексной переменной. Справедлива формула :
(2)
Эта формула устанавливает возможность вычисления производной от исходного интеграла путем дифференцирования подинтегральной функции по параметру.
ТЕОРЕМА. Пусть f(Z) является аналитической функцией в области G и непрерывной в области G (G включая граничные точки ), тогда во внутренних точках области G существует производная любого порядка от функции f(Z) причем для ее вычисления имеет место формула :
(3)
С помощью формулы (3) можно получить производную любого порядка от аналитической функции f (Z) в любой точке Z области ее аналитичности. Для до