Введение
В настоящее время во всем мире наблюдается повышенный интерес к использованию в различных отраслях экономики нетрадиционных возобновляемых источников энергии (НВИЭ). Ведется бурная дискуссия о выборе путей развития энергетики. Это связано, прежде всего, с растущей необходимостью охраны окружающей среды.
Движущей силой этого процесса являются происходящие изменения в энергетической политике стран со структурной перестройкой топливно-энергетического комплекса, связанной с экологической ситуацией, складывающейся в настоящее время как переходом на энергосберегающие и ресурсосберегающие технологии в энергетике, так и в промышленности и в жилищно-гражданском комплексе.
Ежегодно в мире увеличивается число международных симпозиумов, конференций и встреч ученых и специалистов, рассматривающих состояние и перспективы развития этого направления энергетики.
Значительное внимание этой проблеме уделяется организациями, входящими в ООН, такими как ЮНЕСКО, ЕЭК, ЮНЕП, ЮНИДС, а также другими межправительственными и неправительственными международными организациями. Выделяются значительные средства на работы в области НВИЭ из целевых ассигнований ЕЭС, Европейского фонда национального развития, Евроатома и других организаций.
Приближающаяся угроза топливного “голода”, а также загрязнение окружающей среды и тот факт, что прирост потребности в энергии значительно опережает прирост ее производства, вынуждает многие страны с новых позиций обратить внимание на энергию солнечных лучей, ветра, текущей воды, тепла земных недр, то есть на энергию, большая часть которой растворяется в пространстве, не принося ни вреда, ни пользы.
В настоящее время на производство тепла и электричества расходуется ежегодно количество тепла, эквивалентное примерно 1000 трлн. баррелей нефти, сжигание которых сильно засоряет атмосферу Земли.
Опыт.
В 1990 г. первое место по объему бюджетных ассигнований на НИОКР в области НВИЭ сохранялось за США, второе – у Японии, у германии – третье, далее следуют Италия, Испания, Великобритания и Нидерланды. Отмечается также некоторая смена приоритетов в отношении к различным видам НВИЭ. Первое место принадлежит теперь солнечной энергетике, второе – биоэнергетике, которая несколько оттеснила ветроэнергетику. Последнее объясняется тем, что многие ветроэнергетические проекты не доведены до промышленной и коммерческой стадии. Третье место осталось за геотермальной энергетикой.
В «Белой книге» ООН (1992 г.), посвященной роли НВИЭ приведена оценка удельных затрат на строительство энергетических установок на нетрадиционных возобновляемых источниках энергии.
Ожидаемая стоимость в долларах 1 квт установленной мощности в 1998 г. оценивается: для ТЭС на угле мощностью 300 МВт – 2283, для группы ветроустановок мощностью 75 МВт – 1434. Для электростанций на биомассе мощностью 40 МВт – 7085, ГеоТЭС мощностью 113 МВт – 1527, солнечные электростанции модульного типа мощностью 30 МВт – 4497, фотоэлектрические станции мощностью 100 МВт – 3800 МВт – 4200. Доля НВИЭ в мировом топливно-энергетическом балансе мира в 1985 г. составила 17,6%, в том числе гидроэнергия 5,8% (доля среди НВИЭ 33%), биомасса из природных источников и энергетических плантаций – 10,3% (58% всех НВИЭ), отходы сельского хозяйства – 1,2%. Ожидается, что к 2000 г. вклад НВИЭ возрастет до 4807 млн. т. условного топлива, при этом гидроэнергия составит 26%, солнечная энергия 6%, древесное топливо 49%, отходы 15%, энергия ветра 1,8%. К 2020 г. при общем потреблении НВИЭ примерно 6944 млн. т. условного топлива, доля различных источников составит соответственно 25; 9,6; 42 и 13,3%.
Учитывая все более обостряющиеся проблемы защиты окружающей среды, сделана попытка оценки предельных значений возможного использования энергии. В одном из прогнозов отмечается, что для предотвращения катастрофического загрязнения окружающей среды и сохранения разнообразия биологических вдов на Земле потребление энергии на одного человека в среднем не должна превышать 80 ГДж/год.
В настоящее время в США оно составляет 280, в Великобритании 150 ГДж.
В одном из прогнозов, разработанных в Испании, проведена оценка возможного потенциала использования НВИЭ в мире. Технический гидропотенциал мира оценен в 1350 ГВт.
По прогнозу развития использования НВИЭ, выполненному в США указывается, что ресурсы НВИЭ в США более чем в 500 раз превышают объемы их потребления и более чем в 10 раз ресурсы органического и ядерного топлива.
К 2030 г. НВИЭ могут дать энергию, эквивалентную 50-70 современного уровня потребления энергии. НВИЭ, преимущественно биомасса и гидроресурсы, удовлетворяют сейчас примерно 20% мировой потребности в энергии, а энергия биомассы – 35% энергетических потребностей развивающихся стран.
Гидроэнергия и биомасса удовлетворяют более 50% энергетических потребностей Норвегии. В промышленно развитых странах потребность в низкотемпературном тепле составляет 30-50% общей потребности в энергии, а в развивающихся странах – еще больше. Через несколько десятилетий с помощью солнечной энергии будет производиться нагрев почти всей требующейся воды, а пассивные системы отопления и охлаждения зданий снизят потребность в энергии для этих целей примерно на 80%.
На Кипре, в Израиле , Японии и Иордании 25-65% потребности в горячей воде обеспечивают гелиотермические установки.
В конце 1989 г. мощность электрогенерирующих установок в странах ЕС на НВИЭ составила 1718 МВт. Например, в Португалии мощность установок на биомассе составила 201 МВт, на городских и промышленных отходах в Германии – 194, В Нидерландах - 164 МВт. В Италии мощность геотермальных установок составила 521 МВт (всего в странах ЕС 559 МВт). Франция – единственная страна, обладающая крупной электростанцией 240 МВт. Дания обладает 77% (253 МВт ) всех ветроустановок ЕС, Нидерланды – 40 МВт.
В странах ЕС реализовалась третья четырехлетняя программа в области НВИЭ (1990 – 1994 гг.), принципиальной целью которой являлось повышение конкурентоспособности Европейской промышленности высоких технологий на мировом рынке, в сравнении с промышленностью США и Японии.
Важнейшим достижением первых двух программ НИОКР были признаны разработка проекта солнечной электростанции башенного типа, строительство 15 гелиоэнергетических установок мощностью 30 – 300 кВт внедрение технологий по использованию энергии биомассы и геотермальной энергии.
В мире эксплуатируется свыше 100 тыс. ветроэнергетических установок общей мощностью 2500 МВт, в том числе более 16 тыс. в США.
Согласно прогнозу МИРЭС, на долю НВИЭ в 2020 г. будет приходиться 1150 – 1450 млн. т условного топлива (5,6 – 5,8% общего энергопотребления).При этом прогнозируемая доля отдельных видов НВИЭ составит: биомасса – 35%, солнечная энергия – 13%, гидроэнергия – 16%, ветроэнергия – 18%, геотермальная энергия – 12%, энергия океана – 6%.[5]
СИТУАЦИЯ НА УКРАИНЕ И В КРЫМУ.
Трудно переоценить влияние, которое оказывает энергетическая сфера на жизнедеятельность населения и национальную безопасность Украины.
После нефтяных кризисов 1973 и 1979 гг. и особенно после Чернобыльской катастрофы, ограничившей развитие атомной энергетики, взгляды специалистов на энергетическую отрасль несколько изменились. По их мнению, энергетический кризис, который переживает Украина в настоящее время, связан, в первую очередь, с недостатком собственных топливно-энергетических ресурсов (ТЭР), который приходится выполнять за счет импорта угля, нефти и природного газа, а также неэффективностью их использования на местах потребления.
Несмотря на некоторые положительные сдвиги (снижение инфляции, создание финансовой банковской системы и наметившийся рост производства в отдельных отраслях), экономика и энергетика Украины в 1996 — 1997 гг. продолжали оставаться в кризисном состоянии. Валовой внутренний продукт (ВВП) в 1996г. вновь уменьшился. В 1997г. его объем снизился по сравнению с 1996 г. еще на 9%.
Объемы производства и добычи энергоресурсов в Украине изменились незначительно. Добыча угля в 1996г. увеличилась по сравнению с 1995г. на 9,2% и составила 2101,5 ПДЖ, природного газа – на 1,6% и достигла 630,9 ПДж, производство электроэнергии снизилось на 0,7% и составило 192,6 ТВт.ч.
Как и в предыдущие годы, в 1996 — 1997 гг. наблюдались такие негативные явления, как низкая эффективность управления экономикой, кризис платежей между предприятиями и задолженность по заработной плате, большой удельный вес теневой экономики. Темпы снижения уровней ВВП выше, чем темпы уменьшения потребности в энергоресурсах, что определяет ухудшение показателей эффективности энергоиспользования.
В настоящее время кризисное состояние отраслей энергетики характеризуется в первую очередь большими задолженностями потребителей по оплате угля, газа, нефтепродуктов, электрической и тепловой энергии. Только за электроэнергию задолженность составляет свыше 2,5 млрд. долл. При этом наиболее надежным плательщиком является население, которое оплатило около 70% потребленной энергии и 80 % стоимости использованного газа.
Снижение энергопотребления, в том числе природного газа и электроэнергии, обусловлено главным образом падением производства. Определенное влияние на уменьшение энергопотребления оказал рост цен на энергоресурсы. Цена на электроэнергию в 1996г. возросла по сравнению с 1990г. для бытовых потребителей более чем в 20 раз, в промышленности — в 35 раз и составила соответственно 4,4 и 3,5 — 3,8 цента за 1 кВт-ч. Государство принимает активное участие в регулировании цен на электроэнергию, в частности, в установлении верхнего предела цены на электроэнергию, потребляемую в быту. Такое же участие государство принимало в установлении верхнего предела цены на газ для бытовых потребителей в 1997 г. До октября 1997 г. оно выплачивало из бюджета 20%-ную дотацию за газ, потребляемый в быту, при его цене 83 долл. за 1000 м3 (с учетом транспорта газа). Сейчас для бытовых потребителей установлена цена на природный газ в размере 62 долл. за 1000 м3 при наличии газового счетчика и 70 долл. при его отсутствии.
Цены на тепловую энергию в 1990 — 1995 гг. менялись значительно чаще, чем на остальные энергоносители. Особенно выросла цена на тепловую энергию для бытовых потребителей: так, в 1996 г. она увеличилась в 129 раз по сравнению с 1990 г. В настоящее время средняя цена за 1 Гкал тепла составляет: для промышленности — 28,9, для бытовых потребителей — 16 долл.
Таким образом, переход к рыночной экономике существенно повлиял на увеличение цен на энергоресурсы, что осложнило платежную способность потребителей. Большие задолженности по оплате энергоресурсов отрицательно сказались на эффективности работы энергетических отраслей и блокировали их деятельность в направлении дальнейшего развития и модернизации энергетического оборудования. Более 70% оборудования тепловых электростанций Украины требуют замены или модернизации, угольная промышленность нуждается в реструктуризации шахтного фонда, оборудование гидроэлектростанций Днепровского каскада физически и морально устарело. В электроэнергетике предусматривается ввод в эксплуатацию по одному блоку мощностью 1000 МВт на Ровенской и Хмельницкой АЭС, в процессе модернизации тепловых электростанций намечается использование парогазовых циклов.
При проведении энергетической политики основные усилия государства направлены на увеличение доли производства собственных энергоресурсов (сейчас до 50% топлива импортируется), а также на дальнейшую диверсификацию источников их импорта. Как уже отмечалось, с падением объемов производства потребление энергоресурсов существенно снизилось. Если рассмотреть энергопотребление по отраслям, то видно, что наиболее значительное снижение потребности произошло в промышленности. Самые низкие темпы снижения потребности в конечной энергии и природном газе наблюдаются в бытовом секторе, более того, потребность в электрической энергии по сравнению с 1990 г. даже несколько возросла.
Прежде чем рассмотреть состояние приватизации энергетики и возможности прямых зарубежных инвестиций, необходимо проанализировать структуру энергетики, в частности, таких отраслей, как электроэнергетика и газовая промышленность. Руководящим и координирующим органом в электроэнергетике является Министерство энергетики Украины. В его структуру входят 4 генерирующие компании и 27 региональных распределительных компаний (25 областных и 2 городских). Вся продажа электроэнергии потребителям осуществляется через региональные распределительные компании.
Газовой промышленностью управляет Государственный комитет нефтяной, газовой и нефтеперерабатывающей промышленности Украины. В его структуру входят два акционерных общества — "Укргазпром" (добыча, переработка, транспорт, сбережение газа) и "Укргаз" (реализация газа потребителям). АО "Укргазпром" состоит из 8 региональных дочерних предприятий, АО "Укргаз" имеет в своем составе 25 областных и 2 городских региональных организации по реализации газа потребителям. На газовом рынке Украины существует также сеть крупных газотрейдеров (их количество меняется ежегодно, в среднем — 5 — 7 трейдеров). По новым правилам получить лицензию на поставку в Украину газа может практически каждая фирма при соответствующем оформлении документов. Упраздняется практиковавшийся в последнее время территориальный принцип функционирования газового рынка, при котором вся территория государства была поделена между крупными газотрейдерами. При такой схеме у потребителей конкретного региона не было выбора, так как поставщик был практически один.
Процесс приватизации в Украине идет пока недостаточно активно. Практически приватизированы все малые и средние предприятия, а из крупных государственных промышленных предприятий приватизировано около 50 %. Можно отметить две основные причины низких темпов приватизации: отсутствие эффективных механизмов приватизации, что приводит к злоупотреблениям и наносит значительный ущерб государству;
существование достаточно сильной оппозиции левых сил в Верховном Совете и на местах.
Приватизация предприятий энергетического комплекса начата в 1996г. Сейчас уже приватизировано большинство областных распределительных компаний в электроэнергетике, при этом предусмотрено, что доля государства в акциях областных распределительных компаний составит 26 %. Доля государства в пакетах акций генерирующих компаний определена в размере 51%.
Практически процесс масштабной приватизации начат только в электроэнергетике, продвижение в этом направлении в других энергетических отраслях пока незначительно. Это одна из причин отсутствия прямых зарубежных инвестиций в энергетику. В настоящее время реализуется инвестиционный проект по реконструкции гидроэлектростанций р. Днепр стоимостью 120 млн. долл., из которых доля прямых зарубежных инвестиций составляет 90 млн. долл. Рассматриваются варианты использования прямых зарубежных инвестиций в проектах реконструкции Старобешевской, Змиевской и Криворожской тепловых электростанций, а также в проектах реструктуризации предприятий угольной промышленности.
Теплоснабжение промышленных и бытовых потребителей основывается на использовании централизованных теплоисточников, их доля превышает 80%. В 1996г. отпуск тепла потребителям от централизованных источников составил 8 млн. Гкал, или 1013,1 ПДж.
В настоящее время в структуре централизованного теплоснабжения наибольший удельный вес имеют котельные установки — 62%, доля тепловых электростанций составляет 33 %, утилизационных установок — 4,8 %, остальная выработка тепла (0,2%) осуществляется прочими установками. Тепловая мощность теплоэлектроцентралей составляет 132,8 тыс. ГДж/ч, котельных - 708,9 тыс. ГДж/ч.
Анализ показывает, что в структуре мощностей ТЭЦ Украины около 40 % составляет энергетическое оборудование, рассчитанное на низкие и средние параметры пара (4 и 9 МПа), которое физически устарело и находится в критическом состоянии. Здесь прежде всего стоит задача вывода этого оборудования из эксплуатации и перевода ТЭЦ в режим работы котельных.
Количество централизованных котельных мощностью более 84 ГДж/ч составляет 2780, при этом средняя мощность одной котельной — 255 ГДж/ч.
Следует отметить основные отрицательные моменты систем централизованного теплоснабжения в Украине:
низкая надежность транспорта тепла и большие эксплуатационные затраты (значительно выше проектных) на ремонт тепловых сетей;
недостаточно гибкое регулирование режимов теплоснабжения, что снижает комфортность и приводит к потерям тепловой энергии;
большой процент физического износа оборудования.
В целом потребление в сфере централизованного теплоснабжения в 1996 г. по сравнению с 1990г. снизилось на 41,2%, при этом с 1996г. отмечался рост теплопотребления в быту.
Согласно статистике потери тепла при централизованном теплоснабжении составляют выше 17% общего количества тепловой энергии, передаваемой потребителям.
При дальнейшем развитии теплоснабжения Украины и техническом перевооружении всей теплоэнергетики необходимо учитывать два основных взаимоисключающих фактора: снижение доли централизации в связи с предполагаемым массовым индивидуальным жилищным строительством, с одной стороны, и необходимость увеличения удельного веса теплофикационной выработки электроэнергии в связи с резким удорожанием органического топлива и возникающими проблемами топливообеспечения — с другой.
Развитие теплофикации предполагает использование новых прогрессивных технологий:
внедрение парогазовых ТЭЦ с утилизацией тепла по схеме высокотемпературных и низкотемпературных подогревателей на базе отечественного и импортного оборудования, в частности, внедрение парогазовых ТЭЦ по схеме высокотемпературных подогревателей при внутрицикловой газификации угля на паровоздушном дутье, а также с парогенераторами с кипящим слоем;
совершенствование паротурбинного цикла путем утилизации тепла уходящих газов при охлаждении их ниже температуры точки росы;
организация процесса сжигания природного газа с утилизацией тепла, что позволяет снизить расход газа на 10 — 12% и вредные выбросы — на 50 - 60%.
Украина располагает значительными ресурсами нетрадиционных возобновляемых источников энергии (солнечная и геотермальная энергия) для получения тепла. Однако при современном уровне развития техники их широкое использование затруднено из-за неконкурентоспособности в сравнении с традиционными источниками, так как государство практически не вкладывало средства в создание нужных технологий и оборудования. Вовлечение в энергетический баланс страны ресурсов геотермальной и солнечной энергии для целей теплоснабжения может обеспечить экономию органического топлива в размере 3—5%.
Недостаточно используются такие нетрадиционные источники теплоснабжения, как тепловые насосы. При утилизации теплоты возобновляемых источников энергии и низкотемпературных вторичных ресурсов тепловые насосы могут обеспечить до 5% производства тепловой энергии. Теплонасосные станции мощностью 25 — 100 МВт, способные извлекать тепловую энергию из больших природных водоемов, систем оборотного водоснабжения предприятий, стоков городов, могут заменить традиционные котельные, предотвращая при этом экологический ущерб, наносимый сжиганием топлива.
Очевидно, что в перспективе доля централизованного теплоснабжения несколько снизится в связи с увеличением удельного веса децентрализованных источников, однако роль централизованных источников тепла останется преобладающей. До начала процесса приватизации около 30% источников централизованного теплоснабжения находилось в собственности коммунальной энергетики, а остальные принадлежали отраслевым министерствам (Минэнерго и другим). Все это была государственная собственность. В настоящее время более 40% источников централизованного теплоснабжения является собственностью частных лиц и местной администрации, предполагается полная передача источников теплоснабжения из государственной собственности в частную и в собственность местных органов управления.
Энергетика и другие отрасли экономики оказывают негативное воздействие на окружающую среду, при этом доля энергетических отраслей составляет до 60%. Снижение объема выбросов за последние годы связано главным образом с уменьшением производства электрической и тепловой энергии, так как отсутствие финансирования не позволило реализовать новые мероприятия по уменьшению вредных выбросов. В табл. 4 приведены расчеты эмиссии парниковых газов, выполненные по методике IPCC. Основная доля выбросов парниковых газов — 86% — приходится на процессы сжигания различных видов топлива, 14% выбросов образуется в технологических процессах производства. Мероприятия по уменьшению выбросов парниковых газов можно систематизировать следующим образом:
реализация мер по снижению потребности в топливе и энергии;
совершенствование индустриальных (технологических) процессов с целью снижения объемов эмиссии;
лесовосстановление, в том числе в зоне Чернобыльской АЭС;
утилизация жидких и твердых бытовых отходов с целью снижения выбросов СН4;
осуществление комплекса специальных мероприятий и внедрение эффективных устройств по снижению выбросов NО , СО и др.;
прочие способы снижения вредных выбросов (сокращение потерь горючих газов, совершенствование внутриотраслевой структуры производства и др.).[4]
Крым относится к знергодефицитному региону Украины, удовлетворяющему свои потребности за счет использования собственных ТЭР менее чем на 40%. На настоящий момент годовая потребность Крыма в природном газе составляет 1 млрл 650 млн. куб. м; при этом собственная добыча составляет только 650 млн. куб м. Дефицит восполняется поставками из месторождений Западной Сибири и Средней Азии по ценам, приближающимся к мировым.
Электропотребление составляет около 8 млрд. кВт/час в год. Но за счет собственных источников вырабатывается лишь 10% необходимой энергии. Остальная часть поступает в Крым по межсистемным линиям электропередачи напряжением 220—330 кВт от "Одессэнерго" и "Днепроэнерго" (соответственно 52,1 и 36,9%). Однако по этим линиям предел по мощности составляет 1280 МВт. При его превышении вводятся вынужденные отключения потребителей для предотвращения аварий и повреждения оборудования.
К основным потребителям электроэнергии в Крыму относятся: промышленность (включая агропроизводство) — 35%, сельское хозяйство — 22%, население — 21%, социальная сфера — 15%, прочие потребители — 7%.
Главными производителями электроэнергии в республике являются тепловые электростанции. Они расположены в Симферополе, Севастополе, Саках и Керчи. Все, за исключением Камыш-Бурунской, использующей уголь, работают на газе, в режиме производства электроэнергии и тепла, т. е. являются теплоэлектроцентралями (ТЭЦ). Суммарная мощность всех электростанций Крыма составляет 374,5 МВт. Мощность Симферопольской ТЭЦ составляет 278 МВт, Севастопольской — 54,5 МВт, Камыш-Бурунской - 30 МВт и Сакской - 12 МВт.
На каждого жителя республики приходится около 3 тыс. кВт.час электроэнергии в год. Для сравнения: в бывшем СССР в среднем 6 тыс., в США — 11 тыс., в Норвегии — 15 тыс. кВт час в год на человека.
Добиться прироста производства электроэнергии на действующих ТЭЦ в объеме, обеспечивающем полное снятие дефицита, невозможно. Однако уменьшение зависимости от "Одессэнерго" и "Днепроэнерго" возможно за счет наращивания собственных генерирующих мощностей, как на основе реконструкции и расширения действующих электростанций, так и ввода новых источников.[9]
Анализ данных о прогнозируемых собственных запасах и добыче ТЭР на территории Крымского региона позволяет сделать вывод о том, что Крым имеет достаточные потенциальные возможности для увеличения собственной добычи нефти и природного газа. Однако, для их освоения требуются значительные капитальные вложения с привлечением зарубежных инвесторов, что можно возможно только в перспективе.
Как известно, развитие основных отраслей экономики Крыма полностью зависит от надежности энергообеспечения внутренних потребителей и стоимости энергоносителей. Периодическое увеличение затрат на приобретение ТЭР при переходе к рыночным отношениям ставит в очень тяжелое экономическое положение как отдельные энергоемкие промышленные предприятия, так и основные отрасли экономики Крыма в целом.
В то же время, эффективность использования ТЭР на промышленных предприятиях Крыма очень низка. При общем спаде производства, энергетические затраты на единицу национального валового продукта увеличились на 25-40 %, что в 2-3 раза выше показателей, в экономически развитых странах Западной Европы. При этом стоимость энергоресурсов на многих промышленных отечественных предприятиях уже достигает 50-70% от стоимости всех затрат, заложенных в себестоимость выпускаемой продукции. Это приводит к ее неконкурентноспособности и снижению реализации как на внешнем, так и на внутреннем рынках, что способствует дестабилизации социально-экономического положения в обществе.
Кроме того, по оценкам специалистов, при сохранении существующих способах добычи нефти и природного газа и их потреблении на уровне 80-х гг., извлекаемые запасы природных ресурсов в Крыму могут быть исчерпаны уже через 40-50 лет.
Для решения этих проблем необходимы, прежде всего, переоценка приоритетов и принятие нетрадиционных и эффектииных мер по перестройке топливно-энергетического хозяйства Крыма в направлении более экономного использования его главного достояния - топливно-энергетических ресурсов. Энергетическая политика должна соответствовать современным требованиям: быть социально значимой и сориентироваться на повышение жизненного уровня населения. Снижение энергоемкости отечественной продукции является важнейшим условием обеспечения энергетической безопасности Украины и Крымского региона в частности.
Важнейшие направления этой политики определены Законом Украины "Об энергосбережении", Указом Президента Украины от 2 апреля 1997 г. №285/97 "О решении Совета национальной безопасности и обороны Украины от 22 марта 1997 г. про неотложные меры для обеспечения Украины энергоносителями и их рациональному использованию". Они отражены в Комплексной государственной Программе энергосбережения Украины (КГПЭ) и Концепции энергосбережения Крыма на период до 2010 г.
Однако для экономического обоснования основных направлении по экономии ТЭР в Крыму, необходима собственная региональная государственная программа по энергосбережению, которая позволит проводить жесткую энергосберегающую политику и в конечном итоге стабилизировать экономическую ситуацию в регионе.
Отдавая приоритет повышению эффективности использования энергоресурсов, можно в значительной степени "разгрузить" инвестиционную составляющую, необходимую для поддержания объемов добычи собственных ТЭР, и значительно улучшить экологическую обстановку в регионе, уменьшив количество вредных выбросов в атмосферу.
Основным стратегическим направлением энергосбережения в Крыму должна стать структурно-технологическая перестройка энергоемких отраслей, которая сможет прекратить рост энергоемкости валового национального продукта к 2000 г. и ее снижение до 20% к 2010 г за счет перехода на менее энергоемкие технологии и производства и прекращение выпуска неконкурентноспособной продукции.
Первоочередными объектами, к которым должна применяться энергосберегающая политика, являются энергоемкие промышленные предприятия и организации ведущих отраслей экономики Крыма. При этом особое внимание должно быть уделено мероприятиям, позволяющим при небольших затратах достичь быстрого возврата вложенных средств за счет более эффективного использования энергоносителей. Основная часть технологических разработок должна быть направлена на модернизацию и оптимизацию технологических процессов с целью уменьшения энергетических затрат на единицу выпускаемой продукции, снижения потерь тепловой и электрической энергии и экономии органического топлива на теплоисточниках.
В то время как основные энергоносители - электроэнергии, газа, угля, жидкого топлива - на отечественных предприятиях расходуются крайне неэффективно, с большими потерями тепловой и электрической энергии и значительными загрязнениями окружающей среды, в Крыму оказываются невостребованными огромные потенциальные возможности природных экологически чистых нетрадиционных возобновляемых источников энергии (НВИЭ): солнечной радиации, ветровой энергии, теплоты подземного грунта, морских и геотермальных вод. Практически не используется теплота промышленных сбросных стоков промпредприятий. В настоящее время вклад НВИЭ в общую энергетику Крымского региона очень мал и составляет не более 1% от всего энергопотребления.
Анализ регионального положения в ТЭК, а также экологического состояния окружающей среды в санаторно-курортных зонах, свидетельствует о технической возможности и экономической целесообразности более широкого использования для теплоснабжения существующих зданий и сооружений НВИЭ с целью экономии тепла и топлива на существующих теплоисточниках.
Национальной энергетической программой Украины предусматривается покрыть к 2010 г. за счет использования нетрадиционных и возобновляемых источников до 10% потребности в ТЭР.[8]
Обоснование.
Существующий энергетический потенциал и перспектива использования | нетрадиционных и возобновляемых источников энергии.
Представленный выше анализ энергопотребления в Крыму показал, что отрицательные тенденции развития нетрадиционной энергетики в Крыму обусловлены, в основном, наличием двух факторов: быстрым истощением природных ресурсов и загрязнением окружающей среды.
При сохранении существующих способов и объемов добычи нефти и природного газа и их потреблении на уровне 80-х гг., извлекаемые запасы могут быть исчерпаны на территории Крымского региона уже через 40-50лет.
Ежегодные потери от ухудшения среды обитания составляют 15-20 % валового национального дохода Зонами экологического бедствия уже являются территории Северного Крыма, побережья Черного и Азовского морей. Критичность ситуации усугубляется экономическим и энергетическим кризисом в регионе, так как на долю энергетики приходится до 80% вредных выбросов в атмосферу.
Внедряемые перспективные технологии традиционной энергетики повышают эффективность использования энергоносителей, но не улучшают экологическую ситуацию, что необходимо для курортно-оздоровительных зон Крыма.
В связи с этим возникает необходимость выявления возможностей рационального использования топливно-энергетических ресурсов традиционной энергетики, с одной стороны, и разработки и широкого внедрения в Крыму научно-технических разработок и предложений по использованию нетрадиционных и возобновляемых экологически чистых источников энергии (НВИЕ), - с другой стороны.
Таким образом, необходимость и целесообразность развития данного направления энергетики по экономии ТЭР в Крыму обусловлены следующими причинами:
-дефицитом традиционных собственных топливно-энергетических ресурсов;
-дисбалансом в развитии энергетического комплекса Украины, который ориентирован на значительное ( до 25-30% ) производство электроэнергии на атомныx электростанциях при фактическом отсутствии производств по получению ядерного топлива, утилизации и переработке отходов;
-благоприятными климато-метеорологическими условиями для использования основных видов возобновляемых источников энергии;
-наличием промышленной базы и производственных мощностей пригодных для производства всех видов оборудования и материалов нетрадиционной энергетики.
К возобновляемым источникам, которые в данное время могут быть эффективно использованы в энергетическом хозяйстве Крыма, относятся: энергия солнца, энергия ветра, энергия биомассы, энергия малых рек и водосбросов, геотермальная энергия, тепловая энергия подземного грунта и поверхностных вод.
Ресурсы возобновляемых источников энергии в Крыму, их энергетический потенциал и объемы использования представлены в табл. 5.1.
Анализ данных табл 5.1 показывает, что исполизование НВИЭ в настоящее время в Крыму составляет только 7% от рекомендуемого специалистами объема использования. На начало 1998г. в Крыму построено и действует 5 ветроэнергетисеских станций (ВЭС) с общей установленной мощностью 7,5 МВт, 24 установки по использованию солнечной энергии, с общей площадью гелиополя 7,5 тыс. кв. м, две геотермальные установкии 12 теплонасосных установок по использованию различных видов НВИЭ.
Экономия ТЭР за счет их использования в 1997 г. составила 6 тыс. т т.у. или 0,2% от общей потребности в котельно-печном топливе, что не отвечает существующим потребностям народного хозяйства Крыма.
В то же время, существующие потенциальные энергетические и технические возможности использования различных видов НВИЭ в Крыму позволяют достичь экономии до 265 млн. т т.у. в год, что может составить к 2005 г. от 8 до 10% от общей потребности в котельно-печном топливе.
Анализ отечественного опыта эксплуатации энергетических объектов, которые используют нетрадиционные и возобновляемые источники энергии, а также учет зарубежного опыта в этой области показывают, что приоритет в развитии и внедрении энергосберегающих мероприятий неосходимо, в первую очередь отдать технологиям и научно-техническим разработкам по использованию: солнечного излучения, ветра, гидроэнергии малых рек, потенциала существующих гидросооружений и городских инженерных сетей, тепловой энергии морской воды и водохранилищ, сбросной теплоты промышленных стоков и городских очистных сооружений, использование бтомассы сельскохозяйственных отходов и других видов НВИЭ.
Среди регионов Украины Автономная Республика Крым обладает наибольшим энергетическим потенциалом и опытом работ по использованию всех видов нетрадиционных и возобновляемых источников энергии.
Целесообразность ускоренного развития нетрадиционной энергетики Крыма обусловлена не только наличием огромных природных ресурсов, собственной материальной и производственной базы, но и экономически выгодными условиями эксплуатации установок по использованию НВЭИ.
Для улучшенного внедрения экологически чистых энергосберегающих технологий была разработана и утверждена согласно Постановлению Совета Министров Крыма от 14 02.94 г, №26 «Комплексная научно-техническая программа развития нетрадиционных возобновляемых источников энергии в Крыму до 2000 г.». На настоящий момент эта программа из-за отсутствия достаточного финансирования реализована частично и требует корректировки для определения реальных объемов внедрения и капитальных затрат для ее реализации.
Первоочередные энергосберегающие технологии по использованию альтернативных источников рекомендуемых для внедрения в Крыму с целью экономии ТЭР и их технико-экономические показатели приведены в табл. 5.2.
Преимуществом установок по использованию НВИЭ является то, что они имеют модульный характер и позволяют вводить в строй малые мощности, наращивая их по мере необходимости. Для населения, живущего в сельской местности, создание автономных энергоустановок малой мощности, базирующихся на НВИЭ, повышает надежность обеспечения электрической и тепловой энергией, что является решением их существующих социальных проблем.
В то же время, внедрение предлагаемых технологий сдерживается отсутствием достаточной законодательной и правовой базы на государственном уровне, предусмотренной Законом Украины «Об энергосбережении».
Основными задачами на сегодняшний момент являются:
- разработка законодательства Украины об альтернативных источниках энергии;
- разработка законодательной и правовой базы для экономического стимулирования руководителей и специалистов предприятий и организаций за разработку и внедрение энергосберегающих технологий;
- определение реальных энергетических возможностей по использованию природных возобновляемых и нетрадиционных источников энергии, создание кадастра для каждого характерного района Крыма;
- разработка и реализация энергетически эффективных схем развития городов и населенных пунктов Крыма с применением новых технологий и оборудования по использованию НВИЭ,
- создание специализированных региональных предприятий по производству энергосберегающего оборудования, его сертификации, монтажу и сервисному обслуживанию;
- обеспечение научно-исследовательских и проектно-конструкторских работ по разработке и внедрению установок по использованию НВИЭ;
- создание научно-технических центров по подготовке и обучению специалистов по вопросам энергосбережения.[8]
Ветер.
Ветер – один из нетрадиционных источников энергии. Ветер рассматривается специалистами как один из наиболее перспективных источников энергии, способный заменить не только традиционные источники, но и ядерную энергетику.
Выработка электроэнергии с помощью ветра имеет ряд преимуществ:
Экологически чистое производство без вредных отходов;
Экономия дефицитного дорогостоящего топлива (традиционного и для атомных станций);
Доступность;
Практическая неисчерпаемость.
В ближайшем будущем ветер будет скорее дополнительным, а не альтернативным источником энергии. По оценкам зарубежных специалистов (в частности США), достаточная конкурентноспособность ветроэнергетических установок (ВЭУ) по сравнению с традиционными типами электростанций может быть обеспечена при сокращении стоимости ВЭУ примерно в два раза и повышении их надежности в 3-5 раз. Во многих странах мира (США, ФРГ, ДАНИЯ, ИТАЛИЯ, ВЕЛИКОБРИТАНИЯ, НИДЕРЛАНДЫ и др.) ассигнуются значительные государственные средства на НИОКР в области создания ВЭУ. Особое внимание при проведении этих работ уделяется повышению надежности установок, их безопасности, снижению шума, уменьшению помех теле- и радиокоммуникаций.
В настоящее время можно выделить следующие сановные направления использования энергии ветра:
Непосредственная выработка механической или тепловой энергии (ветротепловые, ветронасосные, ветрокомпрессорные, мельничные и т.п. установки);
Удовлетворение потребностей в электроэнергии мелких предприятий, фирм, учреждений и т.п.
По данным ООН к 2000 г. доля новых и возобновляемых источников энергии составит более 13% энергоресурсов и будет эквивалентна использованию примерно 1 млрд. т нефти, что немногим меньше доли природного газа иболее чем в два раза превосходит долю ядерной энергии.[5]
Использование энергии ветра. В Дании в 1994 г. действовало приблизительно 3600 ветровых энергетических установок (ВЭУ), обеспечивая 3% общей потребности в электроэнергии. В Калифорнии (США) действует 15 000 ВЭУ, обеспечивающих электроэнергией жителей Сан-Франциско. На конец 1993 г. в мире было приблизительно 20 000 ВЭУ, вырабатывающих 3000 МВт/ч электроэнергии в год. В 80-х годах удельная стоимость ВЭУ составляла 3000 дол/кВт, а стоимость вырабатываемой электроэнергии более 20 центов/(кВт / ч). В дальнейшем за счет усовершенствования ВЭУ удельная стоимость снизилась до 1000-1200 дол/кВт, а стоимость производимой электроэнергии до 7-9 центов/(кВт-ч). Для сравнения на новых ТЭС, работающих на газе и угле, она составляет 4-6 центов/(кВт-ч). Многие американские и европейские компании, многие правительства успешно продвигают ветровую технологию, понимая ее значимость. Так, в Калифорнии в 1987 г. установленная мощность ВЭУ составляла 13% по отношению к общей генерирующей мощности, а в 1990 г. - 24%.
В настоящее время наибольшее распространение получают ВЭУ мощностью 300-750 кВт по сравнению с ранее применявшимися ВЭУ мощностью 100кВт. В новых конструкциях ВЭУ используется аэродинамический профиль ветрового колеса, изготавливаемого из синтетических материалов. Насыщается конструкция многими электронными устройствами, включая контроль за изменением скорости ветра, обеспечивающими эффективность использования ветра. Новые конструкции лучше приспособлены к режиму ветра, в 1994 г. стоимость вырабатываемой электроэнергии уже составила 4-5 центов/(кВт-ч).
В США планируется использовать энергию ветра (кроме Калифорнии) в штатах Миннесота, Монтана, Нью-Йорк, Орегон, Техас, Вермонт, Вашингтон, Висконсин и др. ВЭУ занимают в настоящее время 0,6% площади страны. При использовании ветра в 48 штатах может быть выработано до 20% потребности в энергии США. Теоретические расчеты показывают, что в трех штатах: Северная и Южная Дакота и Техас потребность в электроэнергии может быть полностью обеспечена за счет энергии ветра.
В Северной Германии стоимость вырабатываемой ВЭУ электроэнергии составляет 13 центов/(кВт • ч). Предполагалось к 1995 г. ввести вэу общей мощностью 500 МВт и уже в первой половине 1994 г. установленная мощность ВЭУ составила 95 МВт.
В Дании общая мощность ВЭУ вскоре может достигнуть мощности ВЭУ Германии и Великобритании вместе взятых и превысит 1000 МВт к 2005 г.
Европейский союз предполагает довести мощность ВЭУ до 4000 МВт к 2000 г. и 8000 МВт к 2005 г. В середине 1994 г. в Европе уже было построено ВЭУ общей мощностью 1400 МВт и в 1995 г. эта цифра может достигнуть 2000 МВт.
В Индии наибольший ветряной бум, поддержанный правительством, начался в 1994 г. Уже в середине 1994 г. было ведено в эксплуатацию 120 МВт и в течение последующих 12 мес должно быть введено еще 970 МВт. В результате выполнения этой программы в некоторых регионах Индии располагаемая генерирующая мощность возросла в десятки раз.
В Китае, Новой Зеландии, Швейцарии, Канаде и на Кубе официально предполагалось в 1994 г. приступить к осуществлению проектов строительства ВЭУ.
На Украине с помощью американских фирм предусматривается строительство ВЭУ общей мощностью 500 МВт.
Среди стран, которые еще имеют возможность развития ветроэнергетики, следует указать Аргентину, Канаду, Китай, Россию, Мексику, Южную Америку и Тунис, где возможно за счет энергии ветра покрывать до 20% потребности в электроэнергии.
Наконец, 20 малых субтропических стран, где потребности в электроэнергии удовлетворяются за счет дорогих дизель-генераторных установок, имеют возможность развивать использование ветра.
Развитие ветроэнергетики как источника энергии в некоторых странах сталкивается с противодействием. С одной стороны, ветровые фермы занимают большие площади. С другой стороны, возникают проблемы, связанные с изменением ландшафта при строительстве ВЭУ. Площади, занимаемые ВЭУ, могут быть использованы для сельскохозяйственных нужд. Стоимость 1 га земли в зависимости от регионов может составлять от 100 до 2500 дол. и более. Опыт подсказывает, что требования сохранения эстетики в большинстве случаев могут быть решены.
Другой проблемой, связанной со строительством ВЭУ, возникшей в 1994 г., стала потенциальная возможность гибели птиц на путях их миграции. Орнитологи указывают, что некоторые пути миграции птиц проходят через площади, занимаемые ВЭУ. В связи с этим возникла необходимость провести научные исследования для понимания природы и масштабов проблемы. Эксперты надеются на успешное ее решение.
Немаловажными проблемами также являются влияние уровня шума, создаваемого установкой и влияние работы ВЭУ на системы радиосвязи.
Еще одной из проблем ветроэнергетики является то, что регионы, благоприятные для использования энергии ветра, удалены от крупных индустриальных центров, а строительство новых линий электропередач потребует значительных затрат времени и средств. Так, по расчетам специалистов линия электропередачи для передачи мощностью 2000 МВт на 2000 км может стоить 1,5 биллиона дол.[1]
О СТРОИТЕЛЬСТВЕ ВЭС В УКРАИНЕ
Современная ветроэнергетика является одной из наиболее развитых и перспективных отраслей альтернативной энергетики. В настоящее время, в условиях энергетического кризиса на Украине, ветроэнергетика занимает одно из ведущих мест в использовании НВИЭ.
В Украине взят курс на ускоренное развитие производства ветроэнергетических установок (ВЭУ) и строительство ветроэлектростанций (ВЭС) общей мощностью 500 МВт и более, для чего в ветроэнергетику направляются большие государственные инвестиции (0.75% от товарной продукции производства электроэнергии в системе Минэнерго Украины).
В то же время доля ветроэнергетики в мире за последние 15— 20 лет развития составила только 0,1—0,15% от мировых поставок энергии. Так, в Дании, где производство и внедрение ВЭУ получило наибольшее развитие, доля ВЭС и отдельных ВЭУ на 1993 г. составляла лишь 2% от объема производства электроэнергии. А по данным комиссии Мирового экономического Совета по прогнозированию мировой экономики доля всех нетрадиционных источников энергии (НИЭ) в последующие 30 лет не будет существенно возрастать.
Особо следует отметить, что в странах Европы, Америки, в Японии развитие ветроэнергетики идет на фоне сильной и стабильной экономики, при избытке традиционной генерирующей мощности, отсутствии энергетического кризиса. Большинство ВЭУ созданы частными объединениями, производственная база изготовителей ВЭУ обеспечивает высокие требования стандартов этих стран к качеству изделий, растет единичная мощность ВЭУ и совершенствуются их конструкции. Во всех странах-производителях установок имеются стандарты на ВЭУ, как правило, на внутренний и внешний рынок поступают ВЭУ только с сертификатами качества. Украина пока далека от всего этого.
Необходимо также отметить, что суммарная располагаемая мощность ВЭС в Украине в 500 МВт даст прибавку среднегодовой мощности лишь в 800—100 МВт, что для уровней страны составляет весьма малую величину.
Существующие намерения государства по внедрению ветроэнергетики в Украине базируются в основном на применении лицензированной ВЭУ модели «USW 56-100» и ВЭУ отечественной разработки типа «АВЭ-250С».
Фирмой «Виндэнерго Ltd» разработан проект программы работ по проектированию, строительству и эксплуатации ветроэлектростанций, а также подготовке серийного производства ветроэнергетического оборудования на предприятиях машиностроительного и военно-промышленного комплексов Украины. Программа базируется практически на одновариантном производстве в Украине ВЭУ модели «USW 56-10U», не рассматриваются варианты других моделей, а также моделей других фирм. Программа не прошла всесторонней экспертизы со стороны государственных и общественных организаций страны и зарубежья.
В программе за основу обоснований берутся показатели стоимости, выработки и другие данные исходя из начальной части строительства Донузлавской ВЭС, очень краткого периода ее эксплуатации и малого числа ВЭУ на ней, что не может ложиться в обоснование многозатратной программы по Украине.
Ориентировка программы на производство в Украине ВЭУ суммарной мощностью в 1000 МВт не обоснована, в том числе ни внутренними, ни зарубежными заявками, ни технико-экономическим расчетом.
В 1995 г. в Украине произошли значительные изменения в соотношении цен, а также ухудшилось финансовое состояние, в том числе и в Минэнерго Украины — основном инвесторе программы. Эти обстоятельства требуют рассмотреть целесообразность продолжения выполнения программы.
В программе не учитываются некоторые затраты (на реконструкцию существующих высоковольтных сетей, противоаварийной автоматики, АСУ ВЭС, защит и др.), не полно учитываются затраты на проектирование, строительство и эксплуатацию ВЭС, не рассмотрены многие вопросы, сопутствующие строительству ВЭС в 500 МВт (режимы, устойчивость, противоаварийная автоматика, АСУ ВЭС, предварительные согласования площадок для ВЭС и т.д.), не учтен рост стоимости в последующие годы, не определен прогноз (динамика) стоимости электроэнергии от традиционной энергетики и от ВЭС, стоимости деталей к ВЭУ, поставляемых извне, прогноз стоимости ВЭУ при переходе на производство установок модели «USW 33M-VS». При расчете цены на ВЭУ модели «USW 56-100» и стоимости электроэнергии от нее отсутствуют аналогичные расчеты и динамика цен по годам для других типов ВЭУ.
Программа рассчитана только на 2 года, что явно недопустимо при таких больших инвестициях в ветроэнергетику Украины.
В Украине не проведены серьезные исследования по влиянию крупных ВЭС на окружающую природную среду в зоне их действия. Эти вопросы требуют дополнительных исследований и согласовании с природоохранными организациями, да и соответствующие законы отсутствуют.
ВЭУ модели «USW 56-100» имеют малую для работы в параллель с энергосистемой Украины единичную мощность при формировании комплекса мощного генерирующего источника (ВЭС), что приводит к снижению эффективности использования земли под ВЭС, ветроэнергопотенциала, росту удельных затрат в строительство и на эксплуатационные расходы.
В мире в последние годы основной ввод ВЭУ, работающих в параллель с сетью, идет по линии ввода установок единичной мощностью 250—500 кВт. Считается целесообразным переходить к единичным мощностям ВЭУ мегаваттного класса.
ВЭУ модели «USW 56-100» базируется на устаревшей конструкции, что приводит к меньшей ее эффективности. По ветроэнергетическим характеристикам установка имеет относительно низкие скорости — отключения (22 м/сек) и неразрушающую (56 м/сек), относительно высокие скорости — включения (5 м/сек) и номинальную (13 м/сек), что не позволяет использовать часть диапазона энергии ветра на площадке, а также ограничивает область применения ВЭУ. Расположение лопастей за гондолой увеличивает аэродинамические потери и соответственно снижает выработку электроэнергии. ВЭУ не имеют противогололедной защиты, что ограничивает область их применения или снижает выработку электроэнергии в гололедных районах. Установки не предназначены для работы в автономном режиме, что также ограничивает область их применения.
ВЭУ модели «USW 56-100» обладают еще целым рядом недостатков: установки не вырабатывают реактивную мощность, что требует дополнительных капиталовложений на компенсацию реактивной нагрузки; решетчатая конструкция башни установки приводит к большой вероятности гибели птиц, а также к необходимости размещения шкафа управления на уровне земли, что не исключает возможности хищения электроники из шкафа; незащищенность аппаратуры АСУ от помех и воздействий; отсутствие автоматики раскручивания силовых и контрольных кабелей; тяжелый режим механизмов гондолы из-за знакопеременных нагрузок вследствие применения системы «рыскания» для ориентировки гондолы на направление ветра; быстроходность ветроколеса (72 об/мин); усложненная конструктивно-технологическая схема лопасти для их производства требует большого оснащения, ручного труда и специальных материалов. Фирменные требования к качеству изготовления узлов и деталей ВЭУ затруднительно выдержать в условиях Украины. Для их выполнения требуются большие инвестиции на модернизацию производственных баз украинских производителей ВЭУ.
Кроме того, установка «USW 56-100» не имеет международного и украинского сертификатов качества.
В Украине документально не известен опыт эксплуатации этих ВЭУ в США и других странах, не известен запас заложенной прочности деталей установок а также результат сертификации ВЭУ в США, усталостные характеристики лопастей и других частей установок. Часть деталей производится вне Украины, в дальнейшем потребуется СКВ для приобретения этих деталей для ремонта установок.
Программа АСУ ТП ветроагрегата не известна для пользователей Украины, в АСУ введен защитный код, что не позволит владельцу ВЭУ самостоятельно ее ремонтировать или модернизировать. Естественно, что в условиях массового производства и эксплуатации этих установок в Украине подобное обстоятельство нецелесообразно.
Не определены условия поставки запасных частей к ВЭУ по окончании серийного производства их в Украине. По-видимому, потребуется СКВ.
Стоимость установок этой модели, производимых в Украине, в долларовом эквиваленте быстро и неуклонно растет. По всей вероятности, такая тенденция сохранится и в будущем.
По состоянию на апрель 1996 г. из 32 установок, принятых в эксплуатацию, 22 аварийно вышли из строя с серьезными дефектами: трещины, сползание, отрыв лопастей, дефекты тяги, сгорели 2 генератора и др. По предварительной оценке неисправности возникали из-за неудовлетворительной подготовки модулей ВЭУ на заводе-изготовителе.
Ранее выполненные ТЭО и проект на Донузлавскую ВЭС имели ряд серьезных недоработок и замечаний.
Рекламная и проектная выработки электроэнергии ла Донуздавскри ВЭС пока не подтверждаются. Определяется, причина относительно малой выработки электроэнергии.
Нa основании изложенного можно сделать вывод, что ВЭУ модели «USW 556-100» по конструкции и параметрам не оптимальна для условий работы в параллель с энергосистемой Украины, а также не оптимальна для украинских метеоусловий.
В Украине разработана и производится ВЭУ типа «АВЭ-250С» мощностью 200 кВт. К настоящему времени партия этих установок проходит отработку и опытную эксплуатацию (в основном в Крыму). Разрабатывается подобная установка мощностью 500 кВт.
ВЭУ типа «АВЭ-250С» может работать как в параллель с энергосистемой, так и автономно. По удельной выработке электроэнергии более предпочтительна.
Выводы
1. Ветроэнергетика в Украине не может заменить традиционную энергетику. Она может только дополнить ее. Для этого необходимо иметь традиционную генерирующую мощность, покрывающую всю нагрузку потребителей.
2. Ветроэнергетика в Украине, как и во всем мире, в современных условиях высокозатратна и в ближайшей перспективе не может быть рекомендована для внедрения в больших объемах из-за высокой удельной стоимости ВЭУ, низкого коэффициента использования установленной мощности установок (0.15-0.25),слабости экономики и других факторов.
3. Ориентировка на применение, только одного-двух типов ВЭУ в масштабах всей Украины ошибочна по многим причинам. Только расчеты и технико-экономические обоснования могут определять оптимальный тип ВЭУ для каждой площадки ВЭС.
4. Необходимо разработать государственную программу развития ветроэнер-гетики на более длительный срок (10—15 лет) во многовариантном исполнении по типам ВЭУ, площадкам, регионам и на тендерной основе определить организацию-исполнителя.
5. Вряд ли целесообразно в ближайшие годы вкладывать значительные государственные инвестиции в производство ВЭУ для внутреннего рынка и строить крупные ВЭС. В первую очередь необходимо создать условия для внедрения ветроэнергетики (издание законодательных актов, стандартов, методик, определение льгот, создание сертификационных центров, стимулирование частного бизнеса на инвестиции в ветроэнергетику и т.д.), определение кадастра ветра, финансирование строительства пилотных ВЭУ на перспективных площадках ВЭС и т.д., обеспечить за- щиту иностранного капитала при вложении в ветроэнергетику Украины.
6. Разработка и осуществление программы развития ветроэнергетики Украины должны проводиться с учетом требований «Отраслевых руководящих документов. Определение экономической эффективности капитальных вложений в энергетику. Методика. Общие методические положения», ГКД 340.000.001.9, так как программа фирмы «Виндэнерго Ltd» разработана без учета этих требований.
Материал поступил в редакцию 15.05.96 © Маркин В.М., 1996
[2]