EMBED MSPhotoEd.3
ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
КАФЕДРА СТАТИСТИКИ

О Т Ч Е Т
о результатах выполнения
компьютерной лабораторной работы №1
«Автоматизированный априорный анализ статистической совокупности
в среде MS Excel»
Вариант №____


Выполнил: ст. III курса гр.________
_____________________
Ф.И.О.
Проверил:________ ___________
Должность Ф.И.О.


Москва, 2006 г.
1. Постановка задачи
При проведении статистического наблюдения за деятельностью предприятий корпорации получены выборочные данные по 32-м предприятиям, выпускающим однородную продукцию (выборка 10%-ная, механическая), о среднегодовой стоимости основных производственных фондов и о выпуске продукции за год.
В проводимом статистическом исследовании обследованные предприятия выступают как единицы выборочной совокупности, а показатели Среднегодовая стоимость основных производственных фондов и Выпуск продукции – как изучаемые признаки единиц.
Для проведения автоматизированного статистического анализа совокупности выборочные данные представлены в формате электронных таблиц процессора Excel в диапазоне ячеек B4:C35.
Исходные данные представлены в табл.1.
В процессе исследования совокупности необходимо решить ряд задач.
I. Статистический анализ выборочной совокупности
Выявить наличие среди исходных данных резко выделяющихся значений признаков («выбросов» данных) с целью исключения из выборки аномальных единиц наблюдения.
Рассчитать обобщающие статистические показатели совокупности по изучаемым признакам: среднюю арифметическую (EMBED Equation.3), моду (Мо), медиану (Ме), размах вариации (R), дисперсию( EMBED Equation.3 ), средние отклонения – линейное (EMBED Equation.3) и квадратическое (?n), коэффициент вариации (V?), структурный коэффициент асимметрии К.Пирсона (Asп).
На основе рассчитанных показателей в предположении, что распределения единиц по обоим признакам близки к нормальному, оценить:
а) степень колеблемости значений признаков в совокупности;
б) степень однородности совокупности по изучаемым признакам;
в) устойчивость индивидуальных значений признаков;
г) количество попаданий индивидуальных значений признаков в диапазоны ( EMBED Equation.3 ), ( EMBED Equation.3 ), ( EMBED Equation.3 ).
Дать сравнительную характеристику распределений единиц совокупности по двум изучаемым признакам на основе анализа:
а) вариации признаков;
б) количественной однородности единиц;
в) надежности (типичности) средних значений признаков;
г) симметричности распределений в центральной части ряда.
Построить интервальный вариационный ряд и гистограмму распределения единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов и установить характер (тип) этого распределения.
II. Статистический анализ генеральной совокупности
Рассчитать генеральную дисперсию EMBED Equation.3 , генеральное среднее квадратическое отклонение EMBED Equation.3 и ожидаемый размах вариации признаков RN. Сопоставить значения этих показателей для генеральной и выборочной дисперсий.
Для изучаемых признаков рассчитать:
а) среднюю ошибку выборки;
б) предельные ошибки выборки для уровней надежности P=0,683, P=0,954, P=0,997 и границы, в которых будут находиться средние значения признака генеральной совокупности при заданных уровнях надежности.
Рассчитать коэффициенты асимметрии As и эксцесса Ek. На основе полученных оценок сделать вывод об особенностях формы распределения единиц генеральной совокупности.
III. Экономическая интерпретация результатов статистического исследования предприятий
В этой части исследования необходимо ответить на ряд вопросов.
Типичны ли образующие выборку предприятия по значениям изучаемых экономических показателей?
Каковы наиболее характерные для предприятий значения показателей среднегодовой стоимости основных фондов и выпуска продукции?
Насколько сильны различия в экономических характеристиках предприятий выборочной совокупности? Можно ли утверждать, что выборка сформирована из предприятий с достаточно близкими значениями по каждому из показателей?
Какова структура предприятий выборочной совокупности по среднегодовой стоимости основных фондов? Каков удельный вес предприятий с наибольшими, наименьшими и типичными значениями данного показатели? Какие именно это предприятия?
Носит ли распределение предприятий по группам закономерный характер и какие предприятия (с более высокой или более низкой стоимостью основных фондов) преобладают в совокупности?
Каковы ожидаемые средние величины среднегодовой стоимости основных фондов и выпуска продукции на предприятиях корпорации в целом? Какое максимальное расхождение в значениях показателя можно ожидать?
2. Рабочий файл с результативными таблицами и графиками

Рис. 1



Рис.2
3. Выводы по результатам выполнения лабораторной работы Все статистические показатели представляются с точностью до 2-х знаков после запятой.
I. Статистический анализ выборочной совокупности
Задача 1. В процессе выполнения задания была построена точечная диаграмма, в которой визуально были определены 2 аномальные единицы наблюдения с номерами предприятий 12 и 31. Аномальные единицы наблюдения отражены в таблице 2. Определив аномальные значения, мы удалили их из исходных данных, в результате исходная таблица поменялась (см. табл. 1) и точечная диаграмма приняла вид, представленный на рис. 1.
Задача 2. Рассчитанные выборочные показатели представлены в двух таблицах – таблица 3 и таблица 5. На их основе сформируем единую таблицу (таблица 8) значений выборочных показателей, перечисленных в условии Задачи 2.
Таблица 8
Описательные статистики выборочной совокупности
Задача 3.
3.а) Степень колеблемости признака определяется по значению коэффициента вариации V? в соответствии с оценочной шкалой колеблемости признака.
Для признака Среднегодовая стоимость основных производственных фондов показатель V? =17,25%
Для признака Выпуск продукции показатель V? =21,96%
Вывод Т.к. для каждого признака коэффициент вариации находится в границах от 0 до 40 (0% < V? ? 40%), то согласно оценочной шкале, можно сказать, что колеблемость признаков в обоих случаях незначительная.
3.б) Однородность совокупности по изучаемому признаку для нормального и близких к нормальному распределений устанавливается по значению коэффициента вариации V. Если его значение невелико (V?<33%), то индивидуальные значения признака xi мало отличаются друг от друга, единицы наблюдения количественно однородны.
Для признака Среднегодовая стоимость основных производственных фондов показатель V? =17,25%
Для признака Выпуск продукции показатель V? =21,96%
Вывод Отсюда видно, что коэффициент вариации в обоих случаях V??33%, следовательно, статистическая совокупность по изучаемым признакам однородная, средняя EMBED Equation.3является надежной величиной.
3.в). Сопоставление средних отклонений – квадратического ? и линейного EMBED Equation.3 позволяет сделать вывод об устойчивости индивидуальных значений признака, т.е. об отсутствии среди них «аномальных» вариантов значений.
В условиях симметричного и нормального, а также близких к ним распределений между показателями ? и EMBED Equation.3 имеют место равенства ? EMBED Equation.3 1,25EMBED Equation.3, EMBED Equation.3 EMBED Equation.3 0,8?, поэтому отношение показателей EMBED Equation.3 и ? может служить индикатором устойчивости данных.
Если EMBED Equation.3 >0,8, то значения признака неустойчивы, в них имеются «аномальные» выбросы. Следовательно, несмотря на визуальное обнаружение и исключение нетипичных единиц наблюдений при выполнении Задания 1, некоторые аномалии в первичных данных продолжают сохраняться. В этом случае их следует выявить (например, путем поиска значений, выходящих за границы (EMBED Equation.3)) и рассматривать в качестве возможных «кандидатов» на исключение из выборки.
Для признака Среднегодовая стоимость основных производственных фондов показатель EMBED Equation.3 = =0,791
Для признака Выпуск продукции показатель EMBED Equation.3 = =0,7573
Вывод: В первом случае значение признака равно немногим меньше 0,8, следовательно, значения признака неустойчивы, в них могут быть «аномальные» явления. Для второго признака показатель намного меньше EMBED Equation.3 <0,8, следовательно, значения признака устойчивы.
«Кандидаты» на исключение из выборки:
EMBED Equation.3=1542,14 ± 2•266,06; «Кандидаты» на исключение из выборки выходят за пределы интервала (1010,02; 2074,26). Это предприятия под номерами № 11, 30 (см. табл. 1).
3г) Для оценки количества попаданий индивидуальных значений признаков xi в тот или иной диапазон отклонения от средней EMBED Equation.3 , а также для установления процентного соотношения рассеяния значений xi по 3-м диапазонам необходимо сформировать табл.9 (с конкретными числовыми значениями границ диапазонов).
Таблица 9
Распределение значений признака по диапазонам рассеяния признака относительно EMBED Equation.3
На основе данных табл.9 сопоставить процентное соотношение рассеяния значений признака по трем диапазонам с рассеянием по правилу «трех сигм», справедливому для нормальных и близких к нему распределений:
68,3% располагаются в диапазоне ( EMBED Equation.3 )
95,4% располагаются в диапазоне ( EMBED Equation.3 )
99,7% располагаются в диапазоне ( EMBED Equation.3 )
Если полученное в табл. 9 процентное соотношение рассеяния хi по 3-м диапазонам незначительно расходится с правилом «3-х сигм», можно предположить, что изучаемое распределение признака близко к нормальному.
Расхождение с правилом «3-х сигм» может быть существенным. Например, менее 60% значений хi попадают в центральный диапазон ( EMBED Equation.3 ) или значительно более 5% значения хi выходит за диапазон ( EMBED Equation.3 ). В этих случаях распределение нельзя считать близким к нормальному.

Вывод: из таблицы видно, что процентное соотношение рассеяния обоих признаков по трем диапазонам относительно EMBED Equation.3 незначительно расходится с правилом «3-х сигм» (9.0) (не более 5%), можно считать, что изучаемое распределение признаков близко к нормальному.
Задача 4. Для ответа на вопросы 4а) – 4г) необходимо воспользоваться табл.8 и сравнить величины показателей для двух признаков.
Для сравнения вариации признаков применяется коэффициент вариации EMBED Equation.3
4 а) Для сравнения колеблемости значений признаков, используется коэффициент вариации EMBED Equation.3 (когда сравнивается вариация признаков, имеющие разные средние EMBED Equation.3).. V?(1)= 17,25; V?(2)= 21,96
Вывод: Так как V? по первому признаку меньше V? по второму признаку, то колеблемость значений первого признака (вариация) меньше колеблемости значений второго признака.
4 б) Сравнение количественной однородности единиц.
Чем меньше значение коэффициента вариации V?, тем более однородна совокупность.
Вывод: Так как V? по первому признаку меньше, чем V? по второму признаку, то первая совокупность более однородна.
4 в) Сравнение надежности (типичности) средних значений признаков.
Чем более однородна совокупность, тем надежнее среднее значение признака EMBED Equation.3
Вывод: Так как первая совокупность более однородна, то среднее значение первого признака EMBED Equation.3 надежнее, среднего значения второго признака.
4 г) Сравнение симметричности распределений в центральной части ряда.
В нормальных и близких к нему распределениях основная масса единиц (63,8%) располагается в центральной части ряда, в диапазоне ( EMBED Equation.3 ). Для оценки асимметрии распределения в этом центральном диапазоне служит коэффициент К.Пирсона – Asп.
При правосторонней асимметрии Asп>0, при левосторонней Asп<0. Если Asп=0, вариационный ряд симметричен.
Вывод: Асимметрия распределения признака Среднегодовая стоимость основных производственных фондов в центральной части ряда является левосторонней, так как Asп=-0,16, а асимметрия признака Выпуск продукции - правосторонней, так как Asп=0,05. Сравнение абсолютных величин |Аsп| для обоих рядов показывает, что ряд распределения признака Среднегодовая стоимость основных производственных фондов более асимметричен (0,16>0,05), чем ряд распределения признака Выпуск продукции.
Задача 5. Интервальный вариационный ряд распределения единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов представлен в табл.7., а гистограмма и кумулята - на рис.2.
Возможность отнесения распределения признака «Среднегодовая стоимость основных производственных фондов» к семейству нормальных распределений устанавливается путем анализа формы гистограммы распределения - количества вершин в гистограмме, ее асимметричности и выраженности «хвостов», т.е. частоты появления значений, выходящих за диапазон ( EMBED Equation.3 ).
1. При анализе формы гистограммы прежде всего следует оценить распределение вариантов признака по интервалам (группам). Если на гистограмме четко прослеживаются два-три «горба» частот вариантов, это говорит о том, что значения признака концентрируются сразу в нескольких интервалах, что не соответствует нормальному закону распределения.
Если гистограмма имеет одновершинную форму, есть основания предполагать, что выборочная совокупность может иметь характер распределения, близкий к нормальному.
Заключение по п. По рис.2 видно, что гистограмма имеет одновершинную форму. Таким образом, есть основания предполагать, что выборочная совокупность является однородной по данному признаку (имеет характер распределения, близкий к нормальному).
2. Для дальнейшего анализа формы распределения используются описательные параметры выборки - показатели центра распределения (EMBED Equation.3, Mo, Me), вариации (EMBED Equation.3), асимметрии в центральной части распределения (Asn), - совокупность которых позволяет дать качественную оценку близости эмпирических данных к нормальной форме распределения.
Нормальное распределение является симметричным, и для него выполняется соотношения:
EMBED Equation.3=Mo=Me, Asп=0, Rn=6?n.
Нарушение этих соотношений свидетельствует о наличии асимметрии распределения. Распределение с небольшой или умеренной асимметрией в большинстве случаев по своему типу относится к нормальному.
Заключение по п.2 Наблюдается умеренное отклонение от соотношений:
EMBED Equation.3=Mo=Me, Asп=0.
EMBED Equation.3=1542,14 млн. руб.; Mo=1585 млн. руб.; Me=1552 млн. руб. Следовательно, значения EMBED Equation.3, Mo, Me отличаются мало;
Аsп =-0,16, но |Аsп|?0,25, значит, асимметрия кривой распределения незначительная;
3. В нормальном и близким к нему распределениях крайние варианты значения признака (близкие к хmin и хmax) встречаются много реже (5-7 % всех случаев), чем серединные (лежащие в диапазоне ( EMBED Equation.3 )). Следовательно, по проценту выхода значений признака за пределы диапазона ( EMBED Equation.3 ) можно судить о соответствии длины «хвостов» распределения нормальному закону.
Заключение по п 3 Крайние варианты значения признака встречаются намного реже чем серединные (лежащие в диапазоне ( EMBED Equation.3 )), гистограмма приблизительно симметрична, ее «хвосты» не очень длинны, т.к. 6,67% вариантов лежат за пределами интервала ( EMBED Equation.3 ) (табл.9).
Вывод Гистограмма является одновершинной, приблизительно симметричной хвосты” распределения не очень длинны), т.к. 6,67% вариантов лежат за пределами интервала ( EMBED Equation.3 ),
Следовательно, распределение признака «Среднегодовая стоимость основных производственных фондов» можно отнести к нормальному распределению.
Так же для данного признака можно выявить характер распределения по показателям ассиметрии As и эксцесса Ek:
Показатель асимметрии As оценивает смещение ряда распределения влево или вправо по отношению к оси симметрии нормального распределения.
В изучаемом признаке наблюдается незначительные левосторонняя асимметрия, что свидетельствует о том, что то левая часть оказывается длиннее правой (As=-0,16)- выполняется неравенство EMBED Equation.3<Me<Mo, означающее, что в распределении чаще встречаются более низкие значения признака (среднее значение меньше серединного и модального).
Показатель эксцесса Ek характеризует крутизну кривой распределения - ее заостренность или пологость по сравнению с нормальной кривой.
Для признака Среднегодовая стоимость основных производственных фондов Ek<0 (см. табл. 3), что свидетельствует о том, что вершина кривой распределения лежит ниже вершины нормальной кривой, а форма кривой более пологая по сравнению с нормальной. Значения признака не концентрируются в центральной части ряда, а достаточно равномерно рассеяны по всему диапазону от xmax до xmin.
Мода полученного интервального ряда:
EMBED Equation.3 , где:
EMBED Equation.3 – нижняя граница модального интервала;
i – размер модального интервала;
fMo – частота модального интервала;
fMo-1 – частота интервала, предшествующего модальному;
fMo+1 – частота интервала, следующего за модальным.
EMBED Equation.3 =1574 млн.руб.
Расхождения между полученным значением моды (1574 млн.руб.) и значением моды для несгруппированных данных (1585 млн.руб) объясняется тем, что значение моды для несгруппированных данных получено по фактическим значениям признака, а для интервального ряда - по центральным значениям интервалов.
II. Статистический анализ генеральной совокупности
Задача 1. Рассчитанные генеральные показатели представлены в табл.10.
Таблица 10
Описательные статистики генеральной совокупности
Величина дисперсии генеральной совокупности EMBED Equation.3 может быть оценена непосредственно по выборочной дисперсии EMBED Equation.3.
В математической статистике доказано, что при малом числе наблюдений (особенно при nEMBED Equation.340-50) для вычисления генеральной дисперсии EMBED Equation.3 по выборочной дисперсии EMBED Equation.3 следует использовать формулу
EMBED Equation.3
При достаточно больших n значение поправочного коэффициента EMBED Equation.3 близко к единице (при n=100 его значение равно 1,101, а при n=500 - 1,002 и т.д.). Поэтому при достаточно больших n можно приближено считать, что обе дисперсии совпадают:
EMBED Equation.3.
Рассчитаем отношение EMBED Equation.3 для двух признаков:
Для первого признака EMBED Equation.3=68739.623/68429.533=1.0045
Для второго признака EMBED Equation.3=100969.434/97378.246=1.0368
Вывод: Следовательно, для каждого признака степень расхождения между генеральной y2N и выборочной дисперсиями y2n является незначительной, и оценивается величиной 1,0045 и 1,0368.
Для нормального распределения справедливо равенство RN=6?N.
В условиях близости распределения единиц генеральной совокупности к нормальному это соотношение используется для прогнозной оценки размаха вариации признака в генеральной совокупности.
Ожидаемый размах вариации признаков RN:
- для первого признака RN =1573,092млн.руб.
- для второго признака RN =1906,542млн.руб.
Величина расхождения между показателями: RN и Rn:
- для первого признака |RN -Rn|=473,092млн.руб (1573,092-1100)
- для второго признака |RN -Rn| =586,542млн.руб (1906,542-1320)
Следовательно, размах вариации признака в генеральной совокупности RN превышает аналогичный показатель в выборочной совокупности Rn.

Задача 2. Применение выборочного метода наблюдения связано с измерением степени достоверности статистических характеристик генеральной совокупности, полученных по результатам выборочного наблюдения. Достоверность генеральных параметров зависит от репрезентативности выборки, т.е. от того, насколько полно и адекватно представлены в выборке статистические свойства генеральной совокупности.
Как правило, статистические характеристики выборочной и генеральной совокупностей не совпадают, а отклоняются на некоторую величину ?, которую называют ошибкой выборки (ошибкой репрезентативности). Ошибка выборки – это разность между значением показателя, который был получен по выборке, и генеральным значением этого показателя. Например, разность
EMBED Equation.3= |EMBED Equation.3-EMBED Equation.3|
определяет ошибку репрезентативности для средней величины признака.
Для среднего значения признака средняя ошибка выборки EMBED Equation.3 (ее называют также стандартной ошибкой) выражает среднее квадратическое отклонение ? выборочной средней EMBED Equation.3 от математического ожидания M[EMBED Equation.3] генеральной средней EMBED Equation.3.
Для изучаемых признаков средние ошибки выборки EMBED Equation.3 даны в табл. 3:
- для признака Среднегодовая стоимость основных производственных фондов
EMBED Equation.3=48,686
- для признака Выпуск продукции
EMBED Equation.3=59,006
Предельная ошибка выборки EMBED Equation.3 определяет границы, в пределах которых лежит генеральная средняя EMBED Equation.3. Эти границы задают так называемый доверительный интервал генеральной средней EMBED Equation.3 – случайную область значений, которая с вероятностью P, близкой к 1, гарантированно содержит значение генеральной средней. Эту вероятность называют доверительной вероятностью или уровнем надежности.
Для уровней надежности P=0,954; P=0,997; P=0,683 оценки предельных ошибок выборки EMBED Equation.3 даны в табл. 3, табл. 4а и табл. 4б.
Для генеральной средней предельные значения и доверительные интервалы определяются выражениями:
EMBED Equation.3,
EMBED Equation.3
Предельные ошибки выборки и ожидаемые границы для генеральных средних представлены в табл. 11.
Таблица 11
Предельные ошибки выборки и ожидаемые границы для генеральных средних
На основе данных таблицы можно сделать вывод, что увеличение уровня надежности ведет к расширению ожидаемых границ для генеральных средних.
Задача 3 Значения коэффициентов асимметрии As и эксцесса Ek даны в табл.10.
Показатель асимметрии As оценивает смещение ряда распределения влево или вправо по отношению к оси симметрии нормального распределения.
Если асимметрия правосторонняя (As>0) то правая часть эмпирической кривой оказывается длиннее левой, т.е. имеет место неравенство EMBED Equation.3>Me>Mo, что означает преимущественное появление в распределении более высоких значений признака. (среднее значение EMBED Equation.3 больше серединного Me и модального Mo).
Если асимметрия левосторонняя (As<0), то левая часть эмпирической кривой оказывается длиннее правой и выполняется неравенство EMBED Equation.3<Me<Mo, означающее, что в распределении чаще встречаются более низкие значения признака (среднее значение EMBED Equation.3 меньше серединного Me и модального Mo).
Чем больше величина |As|, тем более асимметрично распределение. Оценочная шкала асимметрии:
|As| EMBED Equation.3 0,25 - асимметрия незначительная;
0,25<|As| EMBED Equation.3 0.5 - асимметрия заметная (умеренная);
|As|>0,5 - асимметрия существенная.
Вывод: Для признака Среднегодовая стоимость основных производственных фондов наблюдается асимметрия.
Показатель эксцесса Ek характеризует крутизну кривой распределения - ее заостренность или пологость по сравнению с нормальной кривой.
Как правило, коэффициент эксцесса вычисляется только для симметричных или близких к ним распределений.
Если Ek>0, то вершина кривой распределения располагается выше вершины нормальной кривой, а форма кривой является более островершинной, чем нормальная. Это говорит о скоплении значений признака в центральной зоне ряда распределения, т.е. о преимущественном появлении в данных значений, близких к средней величине.
Если Ek<0, то вершина кривой распределения лежит ниже вершины нормальной кривой, а форма кривой более пологая по сравнению с нормальной. Это означает, что значения признака не концентрируются в центральной части ряда, а достаточно равномерно рассеяны по всему диапазону от xmax до xmin.
Для нормального распределения Ek=0. При незначительном отклонении Ek от нуля форма кривой эмпирического распределения незначительно отличается от формы нормального распределения.
Чем больше абсолютная величина |Ek|, тем существеннее распределение отличается от нормального.
Вывод: Для признака Среднегодовая стоимость основных производственных фондов приближенна к 0 (-0,151 Следовательно, по этому признаку можно предположить близость распределения единиц генеральной совокупности к нормальному распределению.
Для признака Выпуск продукции Ek<0 (-0,437), что свидетельствует о том, что значения признака не концентрируются в центральной части ряда, а достаточно равномерно рассеяны по всему диапазону от xmax до xmin.

III. Экономическая интерпретация результатов статистического исследования предприятий Выводы должны раскрывать экономический смысл результатов проведенного статистического анализа совокупности предприятия, поэтому ответы на поставленные вопросы задач 1-6, должны носить экономический характер со ссылками на результаты анализа статистических свойств совокупности (п. 1-5 для выборочной совокупности и п. 1-3 для генеральной совокупности).
Задача 1.
Вывод: В результате проведенных операций по выявлению и исключению аномальных показателей, предприятия, образующие выборку, типичны по значениям изучаемых экономических показателей.
Задача 2.
Вывод:
Средняя стоимость основных производственных фондов составляет 1542,138 млн. руб.; средний выпуск продукции – 1445,172 млн. руб.
Наиболее часто встречающееся значение стоимости основных производственных фондов 1585 млн. руб.; выпуска продукции – 1430 млн. руб.
Половина предприятий имеют стоимость основных производственных фондов выше 1552 млн. руб., вторая половина – ниже; соответственно половина предприятий имеет выпуск продукции на сумму выше 1430 млн. руб., другая половина – ниже этой суммы.
Разница между максимальным и минимальным значением среднегодовой стоимости основных производственных фондов составляет 1100 млн. руб.; соответственно для выпуска продукции – 1320 млн. руб.
В среднем величина стоимости основных производственных фондов отличается от средней стоимости ОПФ на ±266,062 млн. руб., для выпуска продукции – на ±317,389 млн. руб..
В общем наблюдается приближенность показателей к средним значениям с небольшим отклонением в меньшую сторону по стоимости основных производственных фондов (Asп=-0,16) и в большую по выпуску продукции (Asп=0,048)
Задача 3.
Вывод: Т.к. коэффициенты вариации равные 17,25% и 21,96%, не превышают 40%, и колеблемость признаков в обоих случаях незначительна, то и различия в экономических характеристиках предприятий выборочной совокупности незначительны. Следовательно, можно утверждать, что выборка сформирована из предприятий с достаточно близкими показателями.
Задача 4.
Вывод: Предприятия выборочной совокупности по среднегодовой стоимости основных фондов имеют следующую структуру: 4 предприятия имеют среднегодовую стоимость основных фондов в пределах 980-1420 млн. руб., 5 предприятий – 1200-1420 млн. руб., 11 – 1420-1640 млн. руб., 7 – 1640-1860 млн.руб. и 3 предприятия – 1860-2080 млн. руб.
Удельный вес предприятий с наибольшими (1640-2080 млн. руб.) значениями – 33,33%, таких предприятий 10; с наименьшими значениями (980-1420 млн. руб.) – 30%, таких предприятий 9; и с типичными значениями данного показателя (1420-1640 млн. руб.) – 36,67%, 11 предприятий.
Задача 5.
Вывод: Исходя из того, что гистограмма ряда распределения имеет одну вершину, выборочная средняя, мода, медиана отличаются незначительно, коэффициент асимметрии равен -0,16, то можно сделать вывод, что распределение предприятий по группам носит закономерный характер. В совокупности преобладают предприятия со среднегодовой стоимостью основных фондов ниже среднего.
Задача 6.
Вывод: С вероятностью 0,683 можно ожидать среднее значение среднегодовой стоимости основных фондов в пределах (1492,68:1591,6) млн. руб. с вероятностью 0,954 – (1440,476:1643,804) млн. руб., с вероятностью 0,997 – (1384,782:1699,498) млн.руб. С вероятностью 0,683 можно ожидать среднее значение выпуска продукции в пределах (1386,168:1504,172) млн. руб., с вероятностью 0,954 – (1321,957:1568,383) млн. руб. и с вероятностью 0,997 – (1245,455:1632,885) млн. руб. на предприятиях корпорации в целом. При этом ожидаемая разница между максимальным и минимальным значением для среднегодовой стоимости основных фондов составит 1573,092 млн. руб., для выпуска продукции – 1906,542 млн. руб.

…………………………………………………………………………………………………
EMBED MSPhotoEd.3
ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
КАФЕДРА СТАТИСТИКИ

О Т Ч Е Т
о результатах выполнения
компьютерной лабораторной работы №2
Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде MS Excel
Вариант № 20


Выполнил: ст. III курса гр.________
_____________________
Ф.И.О.
Проверил:________ ___________
Должность Ф.И.О.

Москва, 2006 г.
1. Постановка задачи
Корреляционно-регрессионный анализ взаимосвязи признаков является составной частью проводимого статистического исследования и частично использует результаты Лабораторной работы № 1.
В Лабораторной работе № 2 изучается взаимосвязь между факторным признаком Среднегодовая стоимость основных производственных фондов (признак Х) и результативным признаком Выпуск продукции (признак Y), значениями которых являются исходные данные Лабораторной работы № 1 после исключения из них аномальных значений.

В процессе статистического исследования необходимо решить ряд задач.
Установить наличие стохастической связи между факторным признаком Х и результативным признаком Y:а) графическим методом;б) методом сопоставления параллельных рядов.
Установить наличие корреляционной связи между признаками Х и Y методом аналитической группировки.
Оценить тесноту связи признаков Х и Y на основе:а) эмпирического корреляционного отношения ?;б) линейного коэффициента корреляции r.
Сравнить значения ? и r и сделать вывод о возможности линейной связи между признаками Х и Y.
Построить однофакторную линейную регрессионную модель связи признаков Х и Y, используя инструмент Регрессия надстройки Пакет анализа, и рассчитать доверительные интервалы коэффициентов уравнения линейной регрессии.
Построить теоретическую кривую регрессии.
Дать экономическую интерпретацию коэффициента регрессии.
Рассчитать коэффициент эластичности и дать его экономическую интерпретацию.
Найти наиболее адекватное уравнение регрессии с помощью средств инструмента Мастер диаграмм.
II. Рабочий файл с результативными таблицами и графиками.

III. Выводы по результатам выполнения лабораторной работы.
Задача 1. Установление наличия стохастической связи между факторным признаком Х и результативным признаком Y:
а) графическим методом.
Вывод: На основе анализа диаграммы рассеяния из Лабораторной работы №1, полученной после удаления аномальных значений, можно сделать вывод, что имеет место стохастическая связь. Предположительный вид связи: линейная прямая.
б) методом сопоставления параллельных рядов.
Вывод: Табл.2.1, полученная путем ранжирования предприятий по возрастанию значения факторного признака Х, показывает, что с увеличением значений факторного признака увеличиваются значения результативного признака, за исключением некоторых отклонений, что позволяет сделать вывод о том, что имеет место статистическая связь
Задача 2. Установление наличия корреляционной связи между признаками Х и Y методом аналитической группировки.
Вывод: Результаты выполнения аналитической группировки предприятий по факторному признаку Среднегодовая стоимость основных производственных фондов даны в табл. 2.2 Рабочего файла, которая показывает, что с увеличением факторного признака X увеличиваются средние значения EMBED Equation.3 результативного признака. Это свидетельствует о наличии корреляционной связи между признаками X и Y.
Задача 3.Оценка тесноты связи признаков Х и Y:
а) на основе эмпирического корреляционного отношения
Для анализа тесноты связи между факторным и результативным признаками, рассчитывается показатель ? - эмпирическое корреляционное отношение, задаваемое формулой
EMBED Equation.3
Для вычисления ? необходимо знать общую дисперсию EMBED Equation.3 и межгрупповую дисперсию EMBED Equation.3 результативного признака Y - Выпуск продукции.
Результаты выполненных расчетов представляются табл. 2.4 Рабочего файла.
Вывод: Величина ?=0,903 является близкой к единице, Это в соответствии с оценочной шкалой Чэддока говорит о весьма высокой степени связи изучаемых признаков (0,9? EMBED Equation.3 = 0,903?0,99).
б) на основе линейного коэффициента корреляции признаков
В предположении, что связь между факторным и результативным признаком имеется, для определения тесноты связи на основе линейного коэффициента корреляции r был использован инструмент Корреляция надстройки Пакет анализа.
Результатом работы инструмента Корреляции является табл. 2.5 Рабочего файла.
Вывод: Значение коэффициента корреляции r=0,913 лежит в интервале 0,9? r = 0,913?0,99, что в соответствии со шкалой Чэддока, говорит о весьма высокой степени связи изучаемых признаков
Так как значение коэффициента корреляции r положительное, то связь между признаками прямая.
Посредством показателя ? измеряется теснота связи любой формы, а с помощью коэффициента корреляции r – только прямолинейная, следовательно, значения ? и r совпадают только при наличии прямолинейной связи. В теории статистики установлено, что если EMBED Equation.3 , то гипотезу о прямолинейной связи можно считать подтвержденной.
Вывод: При EMBED Equation.3 = 0,903, r = 0,913, | EMBED Equation.3 |? |0,815 – 0,834| = 0,019 , следовательно, зависимость признака Y от фактора X можно считать прямолинейной.
Задача 4. Построение однофакторной линейной регрессионной модели связи изучаемых признаков с помощью инструмента Регрессия надстройки Пакет анализа.
Построение регрессионной модели заключается в определении аналитического выражения связи между факторным признаком X и результативным признаком Y.
Инструмент Регрессия производит расчет параметров а0 и а1 уравнения однофакторной линейной регрессии EMBED Equation.3 и проверка его адекватности исследуемым фактическим данным.
В результате работы инструмента Регрессия были получены результативные таблицы 2.6 – 2.9 Рабочего файла.
Вывод: Однофакторная линейная регрессионная модель связи факторного и результативного признаков имеет вид EMBED Equation.3 = -231,9467 + 1,0894х
Доверительные интервал коэффициентов уравнения регрессии представим в нижеследующей таблице
Из таблицы видно, что увеличение уровня надежности ведет к расширению доверительных интервалов коэффициентов уравнения.
Экономическая интерпретация коэффициента регрессии а1
В случае линейного уравнения регрессии EMBED Equation.3 = а0+а1х величина коэффициента регрессии a1 показывает, на сколько в среднем (в абсолютном выражении) изменяется значения результативного признака Y при изменении фактора X на единицу его измерения. Знак при a1 показывает направление этого изменения.
Вывод:
Коэффициент регрессии a1 = 1,089 показывает, что при увеличении стоимости основных фондов на 1 млн. руб., выпуск продукции увеличится в среднем на 1,089 млн. руб.
Коэффициент эластичности EMBED Equation.3 =1,162 (1,089 * 1542,138/1445,172)
Экономическая интерпретация коэффициента эластичности Э показывает, на сколько процентов изменяется в среднем результативный признак при изменении факторного признака на 1%.
Вывод:
Коэффициента эластичности Э показывает, что при увеличении среднегодовой стоимости основных фондов на 1% выпуск продукции возрастет в среднем на 1,16%.
Задача 5. Нахождение наиболее адекватного уравнения регрессии с помощью средств инструмента Мастер диаграмм. Построение для этого уравнения теоретической линии регрессии.
Возможности инструмента Мастер диаграмм позволяют быстро производить построение и анализ адекватности регрессионных моделей, базирующихся на использовании различных видов зависимости между признаками X и Y.
Построение моделей осуществляется непосредственно на диаграмме рассеяния.
На диаграмме рассеяния отображается линия и уравнение регрессии, а также коэффициент детерминации R2.
В лабораторной работе уравнения регрессии и их графики были построены для
4-ти видов зависимости между признаками и даны на диаграмме

Уравнения регрессии и соответствующие им коэффициент детерминации R2 даны в следующей таблице:
Регрессионные модели связи Коэффициенты уравнений необходимо задавать не в компьютерном формате, а в общепринятой десятичной форме чисел.
Выбор наиболее адекватного уравнения регрессии определяется максимальным значением коэффициента детерминации R2: чем ближе значение R2 к единице, тем более точно регрессионная модель соответствует фактическим данным
Вывод: Максимальное значение коэффициента детерминации R2 =0.8381
Вид искомого уравнения регрессии – Y=6E-07x3-0.0028x2+5.0133x-2023.4
Это уравнение регрессии и его график приведены на отдельной диаграмме рассеяния

Вместе с тем, так как значения коэффициентов R2 кубического и линейного уравнения расходятся очень незначительно (на величину 0.0749), а для показателей тесноты связи имеет место неравенство EMBED Equation.3 , то в качестве адекватного уравнения регрессии может быть принято линейное уравнение EMBED Equation.3 = -231,9467 + 1,0894х совпадающее с найденным с помощью инструмента Регрессия надстройки Пакет анализа.