Министерство образования и науки РФ
Федеральное агентство по образованию ГОУ ВПО
Всероссийский заочный финансово-экономический институт
Кафедра философии


КОНТРОЛЬНАЯ РАБОТА
по дисциплине: «Концепции современного естествознания»
на тему: «Микромир: концепции современной физики»


Преподаватель: Панасий В.Д.
Студент ФНО ФК:



Ярославль 2009
Оглавление.
Введение………………………………………………………………..3
Сущность квантовой механики……………………………………….5
Основные идеи классиков квантовой механики……………………. 7
Волновая генетика……………………………………………………13
Заключение……………………………………………………………15
список литературы……………………………………………………16
Введение.
Понятия и принципы классической физики оказались неприменимыми не только к изучению свойств пространства и времени, но еще в большей мере к исследованию физических свойств мельчайших частиц материи или микрообъектов, таких как электроны, протоны, нейтроны, атомы и подобные им объекты, которые часто называют атомными частицами. Они образуют невидимый нами микромир, и поэтому свойства объектов этого мира совершенно не похожи на свойства объектов привычного нам макромира.
Переходя к изучению свойств и закономерностей объектов микромира, необходимо сразу же отказаться от привычных представлений, которые навязаны нам предметами и явлениями окружающего нас макромира. Конечно, сделать это нелегко, ибо весь наш опыт и представления возникли и опираются на наблюдения обычных тел, да и сами мы являемся макрообъектами. Поэтому требуются немалые усилия, чтобы преодолеть наш прежний опыт при изучении микрообъектов. Для описания поведения микрообъектов широко используются абстракции и математические методы исследования.
В первое время физики были поражены необычными свойствами тех мельчайших частиц материи, которые они изучали в микромире. Попытки описать, а тем более объяснить свойства микрочастиц с помощью понятий и принципов классической физики потерпели явную неудачу. Поиски новых понятий и методов объяснения в конце концов привели к возникновению новой квантовой механики, в окончательное построение и обоснование которой значительный вклад внесли Макс Планк, Эрвин Шредингер, Вернер Гейзенберг, Нильс Бор, Луи де Бройль, Альберт Эйнштейн и другие. В самом начале эта механика была названа волновой в противоположность обычной механике, которая рассматривает свои объекты как состоящие из корпускул, или частиц. В дальнейшем для механики микрообъектов утвердилось название квантовой механики.
В последней части моей работы речь пойдет о генетике – биологической науке о наследственности и изменчивости организмов, ее развитии и возможности применения знаний квантовой механики для изучения гена в современной генетике.
Таким образом, целью моей работы является изучение специфических свойств объектов микромира, их структуры, поведения и показать возможности применения знаний квантовой механики для изучения гена в современной генетике. А также изложить основные взгляды и идеи ученых, занимающихся изучением микромира.
Сущность квантовой механики.
Квантовая механика – это физическая теория, устанавливающая способ описания и законы движения на микроуровне. Макс Планк в 1900 г. предположил, что свет испускается неделимыми порциями энергии – квантами, и математически представил это в виде формулы E = hv, где v – частота света, а h – универсальная постоянная, характеризующая меру дискретной порции энергии, которой обмениваются вещество и излучение. В атомную теорию, таким образом, вошли прерывистые физические величины, которые, могут изменяться только скачками.
Последующее изучение явлений микромира привело к результатам, которые резко расходились с общепринятыми представлениями в классической физике и даже теории относительности. Классическая физика видела свою цель в описании объектов, существующих в пространстве и в формулировке законов управляющих их изменениями по времени. Но для таких явлений, как радиоактивный распад, дифракция, испускание спектральных линий, можно утверждать лишь, что имеется некоторая вероятность того, что индивидуальный объект таков и что он имеет такое-то свойство. В квантовой механике нет места для законов, управляющих изменениями отдельного объекта во времени.
Для классической механики характерно описание частиц путем задания их положения и скоростей и зависимости этих величин от времени. В квантовой механике одинаковые частицы в одинаковых условиях могут вести себя по-разному. Законы квантовой механики – законы статистического вероятностного характера. «Мы можем предсказать, сколько приблизительно атомов радиоактивного вещества распадутся в следующие полчаса, но мы не можем сказать, почему именно эти отдельные атомы обречены на гибель» (А. Эйнштейн). На базе квантовой механики невозможно описать положение и скорость элементарной частицы или предсказать ее будущий путь. Волны вероятности говорят о вероятности встретить электрон в том или ином месте.
Еще одним важным отличием квантовой механики от классической является принцип индетерминизма. В классической науке господствовал принцип детерминизма (от лат. определение), в соответствии с которым каждое событие является следствием какой-либо причины: невозможны события, не имеющие причины. Статистический характер квантовой механики заставляет признать, что одна причина может иметь разные следствия и к одному следствию могут вести разные причины (это получило название неоднозначного детерминизма). Дальнейшее продвижение по этому пути приводит к принципу индетерминизма, т.е. к отрицанию того, что все события должны обязательно иметь причину.
Важная особенность явлений микромира заключается в том, что электрон ведет себя подобно частице, когда движется во внешнем электрическом или магнитном поле, и подобно волне, когда дифрагирует, проходя сквозь кристалл. Поведение потока частиц – электронов, атомов, молекул – при встрече с препятствиями или отверстиями атомных размеров подчиняется волновым законам: наблюдаются явления дифракции, интерференции, отражения, преломления и т.п. Более подробно об этих законах и многих других мы поговорим во второй части этой работы, где будут рассказываться основные взгляды и исследования ученых на природу микромира.
Основные идеи классиков квантовой механики.
Первый шаг в направлении изучения квантовой механики был сделан немецким физиком Максом Планком. В конце XIX в. в физике возникла трудность, которая получила название «ультрафиолетовой катастрофы». В соответствии с расчетами по формуле классической электродинамики интенсивность теплового излучения абсолютно черного тела должна была неограниченно возрастать, что явно противоречило опыту. В процессе работы по исследованию теплового излучения, которую М. Планк назвал самой тяжелой в своей жизни, он пришел к ошеломляющему выводу о том, что в процессах излучения энергия может быть отдана или поглощена не непрерывно и не в любых количествах, а лишь в известных неделимых порциях – квантах. Сумма энергий этих мельчайших порций энергии – квантов определяется через число колебаний соответствующего вида излучения и универсальную естественную константу, которую М. Планк ввел в науку под символом h: Е = hv, ставшим впоследствии знаменитым (где h – постоянная Планка, v – частота света).
Если введение кванта еще не создало настоящей квантовой теории, как неоднократно подчеркивал М. Планк, то все же 14 декабря 1900 г., в день опубликования формулы, был заложен ее фундамент. Поэтому в истории физики этот день считается днем рождения квантовой теории. А поскольку понятие элементарного кванта действия служило в дальнейшем основой для понимания всех свойств атомной оболочки и атомного ядра, то 14 декабря 1900 г. следует рассматривать и как день рождения всей атомной физики и начало новой эры естествознания.
Первым физиком, который восторженно принял открытие элементарного кванта действия и творчески развил его, был Альберт Эйнштейн. В 1905 г. он перенес гениальную идею квантованного поглощения и отдачи энергии при тепловом излучении на излучение вообще и таким образом обосновал новое учение о свете.
Представление о свете как о дожде быстро движущихся квантов было чрезвычайно смелым, почти дерзким, в правильность которого вначале поверили немногие. Прежде всего, с расширением квантовой гипотезы до квантовой теории света был не согласен сам М. Планк, относивший свою квантовую формулу только к рассматриваемым им законам теплового излучения черного тела.
А. Эйнштейн предположил, что речь идет о естественной закономерности всеобщего характера. Не оглядываясь на господствующие в оптике взгляды, он применил гипотезу Планка к свету и пришел к выводу, что следует признать корпускулярную структуру света.
Квантовая теория света, или фотонная теория А. Эйнштейна, утверждала, что свет есть постоянно распространяющееся в мировом пространстве волновое явление. И вместе с тем световая энергия, чтобы быть физически действенной, концентрируется лишь в определенных местах, поэтому свет имеет прерывную структуру. Свет может рассматриваться как поток неделимых энергетических зерен, световых квантов, или фотонов. Их энергия определяется элементарным квантом действия Планка и соответствующим числом колебаний. Свет различной окраски состоит из световых квантов различной энергии.
Эйнштейновское представление о световых квантах помогло понять и наглядно представить явление фотоэлектрического эффекта, суть которого заключается в выбивании электронов из вещества под действием электромагнитных волн. Эксперименты показали, что наличие или отсутствие фотоэффекта определяется не интенсивностью падающей волны, а ее частотой. Если предположить, что каждый электрон вырывается одним фотоном, то становится ясно следующее: эффект возникает лишь в том случае, если энергия фотона, а следовательно, и его частота достаточно велика для преодоления сил связи электрона с веществом.
Возникла парадоксальная ситуация: обнаружилось, что свет ведет себя не только как волна, но и как поток корпускул. В опытах по дифракции и интерференции проявляются его волновые свойства, а при фотоэффекте – корпускулярные. При этом фотон оказался корпускулой совершенно особого рода. Основная характеристика его дискретности – присущая ему порция энергии – вычислялась через чисто волновую характеристику – частоту v (Е = hv – формула Планка).
Представление о квантах электромагнитного поля – фотонах – один из наиболее фундаментальных вкладов в разработку квантовой теории. Уже поэтому А. Эйнштейн должен рассматриваться как один из величайших ее создателей. Теория А. Эйнштейна, развивающая взгляды М. Планка, позволила Нильсу Бору разработать модель атома.
В 1913 г. великий датский физик Нильс Бор применил принцип квантования при решении вопроса о строении атома и характеристике атомных спектров.
Модель атома Н. Бора базировалась на планетарной модели Эрнеста Резерфорда (по его модели положительный заряд сосредоточен в малом объеме – ядре, имеющем значительно меньшие размеры, чем атом; электроны вращаются вокруг ядра по орбитам, как планеты вокруг Солнца) и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, основанную на двух постулатах, совершенно несовместимых с классической физикой:
1) в каждом атоме существует несколько стационарных состояний электронов, двигаясь по которым электрон может существовать, не излучая;
2) при переходе электрона из одного стационарного состояния в другое атом излучает или поглощает порцию энергии.
Постулаты Бора объясняют устойчивость атомов: находящиеся в стационарных состояниях электроны без внешней на то причины не излучают электромагнитной энергии. Становится понятным, почему атомы химических элементов не испускают излучения, если их состояние не изменяется; объясняются и линейчатые спектры атомов: каждой линии спектра соответствует переход электрона из одного состояния в другое.
Теория атома Н. Бора позволяла дать точное описание атома водорода, состоящего из одного протона и одного электрона, достаточно хорошо согласующееся с экспериментальными данными. Дальнейшее же распространение теории на многоэлектронные атомы и молекулы столкнулось с непреодолимыми трудностями. Чем подробнее теоретики пытались описать движение электронов в атоме, определить их орбиты, тем большим было расхождение теоретических результатов с экспериментальными данными. Объяснение этому волновая природа частиц: электроны и их заряды как бы размазаны по атому, однако не равномерно, а таким образом, что в некоторых точках усредненная по времени электронная плотность заряда больше, а в других - меньше.
Описание распределения плотности электронного заряда было дано в квантовой механике: плотность электронного заряда в определенных точках дает максимум. Кривая, связывающая точки максимальной плотности, формально называется орбитой электрона. Траектории, вычисленные в теории Н. Бора для одноэлектронного атома водорода, совпали с кривыми максимальной средней плотности заряда, что и обусловило согласованность с экспериментальными данными.
Введенные Бором постулаты ясно показали, что классическая физика не в состоянии объяснить даже самые простые опыты, связанные со структурой атома. Постулаты, чужеродные классической физике, нарушили ее цельность, но позволили объяснить лишь небольшой круг экспериментальных данных.
Создавалось впечатление, что постулаты Н. Бора отражают какие-то новые, неизвестные свойства материи, но лишь частично. Ответы на эти вопросы были получены в результате развития квантовой механики. Выяснилось, что атомную модель Н. Бора не следует понимать буквально, как это было вначале. Процессы в атоме в принципе нельзя наглядно представить в виде механических моделей по аналогии с событиями в макромире. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.
Пытаясь «объединить точку зрения волновой теории с точкой зрения корпускулярной», французский физик Луи де Бройль предположил, что электрон – это волна определенной длины. Дифракция подтверждает волновую гипотезу, отсутствие увеличения энергии выбиваемых светом частиц – квантовую. Это получило название корпускулярно-волнового дуализма. Также Луи де Бройль утверждал, что не только фотоны, но и электроны и любые другие частицы материи обладают и корпускулярными и волновыми свойствами. Корпускулярными параметрами частицы являются ее энергия Е и импульс р, волновыми – частота v и длина волны ?. Вскоре после первых публикаций его гипотеза получила экспериментальное подтверждение. Позднее дифракционные явления были обнаружены и для нейтронов, протонов, атомных и молекулярных пучков, что окончательно доказало наличие волновых свойств у микрочастиц.
Некоторые эффекты объясняются волновой теорией, другие – квантовой, поэтому следует использовать формулы и из волновой, и из квантовой теории – таков смысл принципа дополнительности Н. Бора. «Усилия Бора были направлены на то, чтобы сохранить за обоими наглядными представлениями, корпускулярным и волновым, одинаковое право на существование, причем он пытался показать, что хотя эти представления, возможно, исключают друг друга, однако они лишь вместе делают возможным полное описание процессов в атоме» (В. Гейзенберг).
С принципом дополнительности связано и так называемое «соотношение неопределенностей», сформулированное в 1927 г. Вернером Гейзенбергом, в соответствии с которым в квантовой механике не существует состояний, в которых и местоположение, и количество движения (произведение массы на скорость – импульс) имели бы вполне определенное значение. Частица со строго определенным импульсом совершенно не локализована. Чем более определенным становится импульс, тем менее определенно ее положение.
Соотношение неопределенностей гласит, что для абсолютно точной локализации микрочастицы необходимы бесконечно большие импульсы, что физически не может быть осуществлено. Более того, современная физика элементарных частиц показывает, что при очень сильных воздействиях на частицу она вообще не сохраняется, а происходит даже множественное рождение частиц.
Не меньший вклад в развитие квантовой механики внес австрийский физик Эрвин Шредингер. В 1926 г. он сформулировал математическое уравнение, определяющее поведение волн материи, так называемое уравнение Шредингера. Оно имеет вид: ???² = dW/dV, где ???² - квадрат модуля волновой функции. Волновая функция ? с координатами (x,y,z) была введена для описания вероятностного состояния микрообъекта. Это уравнение играет в квантовой механике ту же роль, что и уравнение Ньютона в классической механике и уравнение Максвелла в электродинамике. Как и уравнения Ньютона и Максвелла, уравнение Шредингера не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытами, что придает ему характер закона природы.
Волновая генетика.
Если век 19-й по праву вошел в историю мировой цивилизации как Век Физики, то недавно завершившемуся веку 20-му, в котором нам посчастливилось жить, по всей вероятности, уготовано место Века Биологии, а может быть, и Века Генетики.
За последнее время генетика обогатилась методами физики и химии. На ее базе возникла молекулярная биология. Биохимия и молекулярная генетика внесли огромный вклад в теорию гена.
Изучение наследственности уже давно было связано с преставлением о ее корпускулярной природе. В 1866 г. Мендель высказал предположение, что признаки организмов определяются наследуемыми единицами, которые он назвал “элементами”. Позднее их стали называть “факторами” и, наконец, генами; было показано, что гены находятся в хромосомах, с которыми они и передаются от одного поколения к другому.
Несмотря на то, что уже многое известно о хромосомах и структуре ДНК, дать определение гена очень трудно, пока удалось сформулировать только три возможных определения гена:
а) ген как единица рекомбинации.
На основании своих работ по построению хромосомных карт дрозофилы Морган постулировал, что ген – это наименьший участок хромосомы, который может быть отделен от примыкающих к нему участков в результате кроссинговера. Согласно этому определению, ген представляет собой крупную единицу, специфическую область хромосомы, определяющую тот или иной признак организма;
б) ген как единица мутирования.
В результате изучения природы мутаций было установлено, что изменения признаков возникают вследствие случайных спонтанных изменений в структуре хромосомы, в последовательности оснований или даже в одном основании. В этом смысле можно было сказать, что ген – это одна пара комплиментарных оснований в нуклеотидной последовательности ДНК, т.е. наименьший участок хромосомы, способный претерпеть мутацию.
в) ген как единица функции.
Поскольку было известно, что от генов зависят структурные, физиологические и биохимические признаки организмов, было предложено определять ген как наименьший участок хромосомы, обусловливающий синтез определенного продукта.
Генотип человека содержит около 100 тысяч генов, функционирующих как взаимосвязанная единая система, в которой любой ген находится в сложном взаимодействии со всеми другими. Характер этих взаимодействий связан с физико-химическими свойствами отдельных атомов и групп атомов, входящих в структуру ДНК (электроотрицательность, потенциал ионизации, электронодонорная или протонодонорная способность, структура электронных облаков, возможность передавать электронные эффекты вдоль всей цепочки углеводного остова и т.д.). К сожалению, сегодня не построена даже принципиальная модель этих процессов, и теоретическая генетика вынуждена во многом использовать эмпирические данные. Идентифицирована всего лишь небольшая часть всех имеющихся в генотипе генов.
Науке известны гены-модификаторы, отвечающие за морфологию и видовые признаки, гены-регуляторы биохимических процессов, гены дифференцировки, которые дают команды, когда у зародыша развиваться тем или иным органам. Наука уже создала своего рода «таблицу Менделеева» из идентифицированных генов.
Заключение.
Итак, принципиально новыми моментами в исследовании микромира стали:
Каждая элементарная частица обладает как корпускулярными, так и волновыми свойствами
Вещество может переходить в излучение (аннигиляция частицы и античастицы дает фотон, т.е. квант света)
Можно предсказать место и импульс элементарной частицы только с определенной вероятностью
Прибор, исследующий поведение частицы, влияет на нее
Точное измерение возможно только при изучении потока частиц, но не одной частицы.
В наше время медико-биологические науки и технологии достигли такого уровня, что на их основе можно не только описывать в терминах молекулярных структур и процессов тонкое строение отдельных частей тела и их согласованную работу, но и создавать принципиально новые методы диагностики, лечения и профилактики многих заболеваний.
Такое проникновение в ультратонкую организацию и жизнедеятельность организма стало возможным благодаря установлению химического строения и функций нуклеиновых кислот, содержащих передаваемые от поколения к поколению генетические тексты, согласно которым реализуется программа развития организма.
Но существуют острые проблемы, над которыми в данный момент усиленно трудятся генетики всей планеты, состоящие в наследственных болезнях, поражающих 4-5% новорожденных и 15% немного повзрослевших детей, таких как сахарный диабет, бронхиальная астма, гипертонические болезни, псориаз, большая группа неврологических расстройств и др.
Список литературы.
Горелов А.А. Концепции современного естествознания: Учебное пособие – М.: Высшее образование, 2005.
Рузавин Г.И. Концепции современного естествознания: Учебник для вузов – М.: ЮНИТИ, 2000.
Соломатин В.А. История и концепции современного естествознания: Учебник для студентов высших учебных заведений. Ярославль: ДИА-пресс, 2000.
Лавриненко В.Н., В.П. Ратников Концепции современного естествознания: Учебник для вузов – М.: Культура и спорт, ЮНИТИ, 1997.
Кибернштерн Ф. Гены и генетика – М.: Параграф, 2001.