EMBED MSPhotoEd.3
ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
КАФЕДРА СТАТИСТИКИ

О Т Ч Е Т
о результатах выполнения
компьютерной лабораторной работы №2
Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде MS Excel
Вариант № 4


Выполнил:
Специальность: финансы и кредит
№ зачётной книжки:
Проверил:

Волгоград 2008
1. Постановка задачи
Корреляционно-регрессионный анализ взаимосвязи признаков является составной частью проводимого статистического исследования и частично использует результаты Лабораторной работы № 1.
В Лабораторной работе № 2 изучается взаимосвязь между факторным признаком Среднегодовая стоимость основных производственных фондов (признак Х) и результативным признаком Выпуск продукции (признак Y), значениями которых являются исходные данные Лабораторной работы № 1 после исключения из них аномальных значений.
В процессе статистического исследования необходимо решить ряд задач.
Установить наличие стохастической связи между факторным признаком Х и результативным признаком Y:а) графическим методом;б) методом сопоставления параллельных рядов.
Установить наличие корреляционной связи между признаками Х и Y методом аналитической группировки.
Оценить тесноту связи признаков Х и Y на основе:а) эмпирического корреляционного отношения ?;б) линейного коэффициента корреляции r.
Сравнить значения ? и r и сделать вывод о возможности линейной связи между признаками Х и Y.
Построить однофакторную линейную регрессионную модель связи признаков Х и Y, используя инструмент Регрессия надстройки Пакет анализа, и рассчитать доверительные интервалы коэффициентов уравнения линейной регрессии.
Построить теоретическую линию регрессии.
Дать экономическую интерпретацию коэффициента регрессии.
Рассчитать коэффициент эластичности и дать его экономическую интерпретацию.
Найти наиболее адекватное нелинейное уравнение регрессии с помощью средств инструмента Мастер диаграмм. Построить для этого уравнения теоретическую кривую регрессии.
II. Рабочий файл с результативными таблицами и графиками.



Рис.1 Уравнения регрессии и её графики


Рис.2 Наиболее адекватное уравнение регрессии
III. Выводы по результатам выполнения лабораторной работы.
Задача 1. Установление наличия стохастической связи между факторным признаком Х и результативным признаком Y:
а) графическим методом.
Вывод: На основе анализа диаграммы рассеяния из Лабораторной работы №1, полученной после удаления аномальных значений, можно сделать вывод, что имеет (не имеет) место стохастическая связь. Предположительный вид связи: линейная (нелинейная) прямая (обратная).
б) методом сопоставления параллельных рядов.
Вывод: Табл.2.1, полученная путем ранжирования предприятий по возрастанию значения факторного признака Х, показывает, что с увеличением значений факторного признака увеличиваются (уменьшаются) значения результативного признака, за исключением некоторых отклонений от общей тенденции, что позволяет сделать вывод о наличии стохастической связи.
Задача 2. Установление наличия корреляционной связи между признаками Х и Y методом аналитической группировки.
Вывод: Результаты выполнения аналитической группировки предприятий по факторному признаку Среднегодовая стоимость основных производственных фондов даны в табл. 2.2 Рабочего файла, которая показывает, что существует корреляционная связь между Среднегодовой стоимостью основных производственных фондов и Выпуском продукции.
Задача 3.Оценка тесноты связи признаков Х и Y:
а) на основе эмпирического корреляционного отношения.
Для анализа тесноты связи между факторным и результативным признаками, рассчитывается показатель ? - эмпирическое корреляционное отношение, задаваемое формулой
EMBED Equation.3 .
Для вычисления ? необходимо знать общую дисперсию EMBED Equation.3 и межгрупповую дисперсию EMBED Equation.3 результативного признака Y - Выпуск продукции.
Результаты выполненных расчетов представляются табл. 2.4 Рабочего файла.
Вывод: Величина ?=0,81 является близкой к единице, что свидетельствует о тесной связи между факторным и результативным признаками.
б) на основе линейного коэффициента корреляции признаков.
В предположении, что связь между факторным и результативным признаками прямолинейная, для определения тесноты связи на основе линейного коэффициента корреляции r был использован инструмент Корреляция надстройки Пакет анализа.
Результатом работы инструмента Корреляции является табл. 2.5 Рабочего файла.
Вывод: Значение коэффициента корреляции r=0,91 лежит в интервале 0,9-0,99, что в соответствии со шкалой Чэддока, говорит о весьма тесной связи между факторным и результативным признаками.
Так как значение коэффициента корреляции r положительное, то связь между признаками прямая.
Посредством показателя ? измеряется теснота связи любой формы, а с помощью коэффициента корреляции r – только прямолинейная, следовательно, значения ? и r совпадают только при наличии прямолинейной связи. В теории статистики установлено, что если EMBED Equation.3 , то гипотезу о прямолинейной связи можно считать подтвержденной.
Вывод: Теснота связи между факторным и результативным признаками весьма значительна.
Задача 4. Построение однофакторной линейной регрессионной модели связи изучаемых признаков с помощью инструмента Регрессия надстройки Пакет анализа.
Построение регрессионной модели заключается в определении аналитического выражения связи между факторным признаком X и результативным признаком Y.
Инструмент Регрессия производит расчет параметров а0 и а1 уравнения однофакторной линейной регрессии EMBED Equation.3 и проверку его адекватности исследуемым фактическим данным.
В результате работы инструмента Регрессия были получены результативные таблицы 2.6 – 2.9 Рабочего файла.
Вывод: Однофакторная линейная регрессионная модель связи факторного и результативного признаков имеет вид прямой.
Доверительные интервалы коэффициентов уравнения регрессии представлены в нижеследующей таблице:
С увеличением надежности границы доверительных интервалов расширяются.
Экономическая интерпретация коэффициента регрессии а1 выражается в форме связи между вариацией факторного признака х и вариацией результативного признака у.
Коэффициент эластичности EMBED Equation.3 = 0,9*(384,38/366,84)= 0,94 при Р=0,95.
Экономическая интерпретация коэффициента эластичности Э:
Степень влияния изменения факторного признака х на изменение результативного признака у.
Задача 5. Нахождение наиболее адекватного уравнения регрессии с помощью средств инструмента Мастер диаграмм. Построение для этого уравнения теоретической линии регрессии.
Уравнения регрессии и их графики построены для 4-х видов нелинейной зависимости между признаками и представлены на диаграмме 2.1 Рабочего файла.
Уравнения регрессии и соответствующие им коэффициенты детерминации R2 приведены в следующей таблице:
Регрессионные модели связи Коэффициенты уравнений необходимо указывать не в компьютерном формате, а в общепринятой десятичной форме чисел.
Выбор наиболее адекватного уравнения регрессии определяется максимальным значением коэффициента детерминации R2: чем ближе значение R2 к единице, тем более точно регрессионная модель соответствует фактическим данным
Вывод: Максимальное значение коэффициента детерминации R2 =0,8372.
Вид искомого уравнения регрессии – полином третьего порядка.
Это уравнение регрессии и его график приведены на отдельной диаграмме рассеяния 2.2 Рабочего файла.
Так как значения коэффициентов детерминации кубического (R2) и линейного уравнения (?2), найденного с помощью инструмента Регрессия надстройки Пакет анализа, расходятся очень незначительно (на величину 0,0042), а для показателей тесноты связи имеет место неравенство EMBED Equation.3 , то в качестве адекватного исходным данным уравнения регрессии может быть принято y=9E-0,6x3-0,01x2+4,8666x-515,91