Рис. 5. График остатков (еi от х2)
6. Для проверки предпосылок МНК рассмотрим графики остатков (рис. 3, 4, 5). На графике еi от х1 остаточная величина еi обнаруживает тенденцию к уменьшению по мере роста х1. Это дает повод усомниться в случайности остаточной компоненты и выполнении предпосылки о равенстве дисперсий. Проверим наличие гетероскедастичности при помощи метода Голдфельда-Квандта:
упорядочим все наблюдения по мере возрастания х1;
разделим совокупность на 2 группы, исключив из рассмотрения 2 центральных наблюдения, тогда в каждой группе будет по 17 наблюдений;
определим по каждой из групп уравнения регрессии (применим инструмент Регрессия). Остаточные суммы квадратов для первой регрессии S1у=0,025073, для второй – S2у=0,003735. Так как S1у> S2у, то Fнабл= S1у / S2у=6.713. Табличное значение F-критерия при доверительной вероятности 0,95 при v1=n1-m=17-2=15 и v2=n-n1-m=36-17-2=15 составляет 2,308. Так как Fнабл>Fтабл, то наличие гетероскедастичности подтверждается.
Предпосылка о равенстве математического ожидания остаточной компоненты нулю выполняется, так как на графиках остатков (еi от хi) (рис 4,5) остатки распределены у оси охi симметрично.
Предпосылка о независимости остатков принимается как аксиома, так как дана пространственная выборка.
Проверим предпосылку о нормальности ряда остатков с помощью RS-критерия.
R=?max- ?min=0,05511-(-0,08342)=0,1385.
S=0.0312
RS=0,1385/0,0312=4,439.
Значение RS-критерия попадает в критический интервал (3,58; 4,84) для n=35 и ?=0,05, значит остатки распределены по нормальному закону.
7. Уравнение множественной регрессии статистически значимо, так как Fрасч>Fтабл (F(0,05;2;33)=3,285) (табл. 8). Так как для коэффициента b2 в уравнение регрессии неравенство |tрасч|>tтабл (t(0,05;33)=2,035) не выполняется, то данный коэффициент является незначимым, а коэффициенты b0 и b1 являются значимыми, так как для них выполняется |tрасч|>tтабл (табл. 10).
Для прогноза индекса человеческого развития лучше всего использовать парную модель регрессии у-х1, так как для нее высокий нормированный коэффициент детерминации и фактор х1 значим. Использование множественной модели нецелесообразно, так как фактор х2 в ней незначим.