EMBED MSPhotoEd.3
ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
КАФЕДРА СТАТИСТИКИ

О Т Ч Е Т
о результатах выполнения
компьютерной лабораторной работы №1
Автоматизированный априорный анализ статистической совокупности
в среде MS Excel
Вариант № 13

Выполнил: ст. III курса
ФИО .
Проверил: Голикова Анна Викторовна
ФИО



Москва, 2007 г.

Постановка задачи
При проведении статистического наблюдения за деятельностью предприятий корпорации получены выборочные данные о среднегодовой стоимости основных производственных фондов и выпуске продукции за год по 32-м предприятиям, выпускающим однородную продукцию (выборка 10%-ная, механическая).
В статистическом исследовании эти предприятия выступают как единицы выборочной совокупности. Генеральную совокупность образуют все предприятия корпорации. Анализируемые признаки предприятий – Среднегодовая стоимость основных производственных фондов и Выпуск продукции – изучаемые признаки единиц совокупности.
Для автоматизации статистических расчетов используются средства электронных таблиц процессора Excel.
Выборочные данные представлены в диапазоне ячеек B4:C35 рабочего листа 1 (табл.1):
В процессе исследования совокупности необходимо решить ряд задач.
I. Статистический анализ выборочной совокупности
Выявить наличие среди исходных данных резко выделяющихся значений признаков (аномалий в данных) и исключить их из выборки.
Рассчитать обобщающие статистические показатели совокупности по изучаемым признакам: среднюю арифметическую (EMBED Equation.3), моду (Мо), медиану (Ме), размах вариации (R), дисперсию( EMBED Equation.3 ), средние отклонения – линейное (EMBED Equation.3) и квадратическое (?n), коэффициент вариации (V?), структурный коэффициент асимметрии К.Пирсона (Asп).
На основе рассчитанных показателей в предположении, что распределения единиц по обоим признакам близки к нормальному, оценить:
а) степень колеблемости значений признаков в совокупности;
б) степень однородности совокупности по изучаемым признакам;
в) устойчивость индивидуальных значений признаков;
г) количество попаданий индивидуальных значений признаков в диапазоны ( EMBED Equation.3 ), ( EMBED Equation.3 ), ( EMBED Equation.3 )..
Сравнить распределения единиц совокупности по двум изучаемым признакам на основе анализа:
а) колеблемости признаков;
б) однородности единиц;
в) надежности (типичности) средних значений признаков;
г) симметричности распределений в центральной части ряда.
Построить интервальный вариационный ряд и гистограмму распределения единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов и установить характер (тип) этого распределения.
II. Статистический анализ генеральной совокупности
Рассчитать генеральную дисперсию EMBED Equation.3 , генеральное среднее квадратическое отклонение EMBED Equation.3 и ожидаемый размах вариации признаков RN. Сопоставить значения генеральной и выборочной дисперсий.
Для изучаемых признаков рассчитать:
а) среднюю ошибку выборки;
б) предельные ошибки выборки для уровней надежности P=0,683, P=0,954, P=0,997 и границы, в которых будут находиться средние значения признака в генеральной совокупности при заданных уровнях надежности.
Рассчитать коэффициенты асимметрии As и эксцесса Ek. На основе полученных оценок охарактеризовать особенности формы распределения единиц генеральной совокупности по каждому из изучаемых признаков.
2. Выводы по результатам выполнения лабораторной работы Все статистические показатели необходимо представить в таблицах с точностью до 2-х знаков после запятой. Таблицы и пробелы в формулировках выводов заполнять вручную. В выводах при выборе альтернативного варианта ответа ненужное зачеркнуть.
I. Статистический анализ выборочной совокупности
Задача 1. Количество аномальных единиц наблюдения (табл.2) равно ............., номера предприятий .............................................................................................................
Задача 2. Рассчитанные выборочные показатели представлены в двух таблицах — табл.3 и табл.5. На основе этих таблиц формируется единая таблица (табл.8) значений выборочных показателей, перечисленных в условии Задачи 2.

Таблица 8
Описательные статистики выборочной совокупности
Задача 3.
3а). Степень колеблемости признака определяется по значению коэффициента вариации V? в соответствии с оценочной шкалой колеблемости признака:
0%<V?40% - колеблемость незначительная;
40%< V?60% - колеблемость средняя (умеренная);
V?>60% - колеблемость значительная.
Вывод:
Для признака Среднегодовая стоимость основных производственных фондов показатель V? =…………. . Так как значение показателя лежит в диапазоне ……………………….. оценочной шкалы, следовательно, колеблемость ………………………………. .
Для признака Выпуск продукции показатель V? =………… . Так как значение показателя лежит в диапазоне ……………………….. оценочной шкалы, следовательно, колеблемость ………………………………. .
3б). Степень однородности совокупности по изучаемому признаку для нормального и близких к нормальному распределений устанавливается по значению коэффициента вариации V?. Если V? EMBED Equation.3 33%, то по данному признаку расхождения между значениями признака невелико, единицы наблюдения количественно однородны.
Вывод:
Для признака Среднегодовая стоимость основных производственных фондов показатель V? EMBED Equation.3 33% (>33%), следовательно, по данному признаку выборочная совокупность …………………………. .
Для признака Выпуск продукции показатель V? EMBED Equation.3 33% (>33%), следовательно, по данному признаку выборочная совокупность …………………………. .
3в). Сопоставление средних отклонений – квадратического ? и линейного EMBED Equation.3 –позволяет сделать вывод об устойчивости индивидуальных значений признака, т.е. об отсутствии среди них «аномальных» вариантов значений.
В условиях симметричного и нормального, а также близких к ним распределений между показателями ? и EMBED Equation.3 имеют место равенства ? EMBED Equation.3 1,25EMBED Equation.3, EMBED Equation.3 EMBED Equation.3 0,8?, поэтому отношение показателей EMBED Equation.3 и ? может служить индикатором устойчивости данных.
Если EMBED Equation.3 >0,8, то значения признака неустойчивы, в них имеются «аномальные» выбросы. Следовательно, несмотря на визуальное обнаружение и исключение нетипичных единиц наблюдения при выполнении Задания 1, некоторые аномалии в первичных данных продолжают сохраняться. В этом случае их следует выявить (например, путем поиска значений, выходящих за границы диапазона (EMBED Equation.3), приведенного в табл. 9) и рассматривать в качестве возможных «кандидатов» на исключение из выборки.
Вывод:
Для признака Среднегодовая стоимость основных производственных фондов показатель EMBED Equation.3 =……. EMBED Equation.3 0,8 (>0,8). Следовательно, значения признака устойчивы (неустойчивы).
«Кандидаты» на исключение из выборки: ……………………………………………………………………………………………….
Для признака Выпуск продукции показатель EMBED Equation.3 =…… EMBED Equation.3 0,8 (>0,8). Следовательно, значения признака устойчивы (неустойчивы).
«Кандидаты» на исключение из выборки: ……………………………………………………………………………………………….
3г). Для оценки количества попаданий индивидуальных значений признаков xi в тот или иной диапазон отклонения от средней EMBED Equation.3 , а также для выявления структуры рассеяния значений xi по 3-м диапазонам формируется табл.9 (с конкретными числовыми значениями границ диапазонов).
Таблица 9
Распределение значений признака по диапазонам рассеяния признака относительно EMBED Equation.3
На основе данных табл.9 структура рассеяния значений признака по трем диапазонам (графы 5 и 6) сопоставляется со структурой рассеяния по правилу «трех сигм», справедливому для нормальных и близких к нему распределений:
68,3% значений располагаются в диапазоне ( EMBED Equation.3 ),
95,4% значений располагаются в диапазоне ( EMBED Equation.3 ),
99,7% значений располагаются в диапазоне ( EMBED Equation.3 ).
Если полученная в табл. 9 структура рассеяния хi по 3-м диапазонам незначительно расходится с правилом «3-х сигм», можно предположить, что распределение единиц совокупности по данному признаку близко к нормальному.
Расхождение с правилом «3-х сигм» может быть существенным. Например, менее 60% значений хi попадают в центральный диапазон ( EMBED Equation.3 ) или значительно более 5% значения хi выходит за диапазон ( EMBED Equation.3 ). В этих случаях распределение нельзя считать близким к нормальному.
Вывод:
Сравнение данных графы 5 табл.9 с правилом «3-х сигм» показывает на их незначительное (существенное) расхождение, следовательно, распределение единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов можно (нельзя) считать близким к нормальному.
Сравнение данных графы 6 табл.9 с правилом «3-х сигм» показывает на незначительное (существенное) расхождение, следовательно, распределение единиц совокупности по признаку Выпуск продукции можно (нельзя) считать близким к нормальному.
Задача 4. Для ответа на вопросы 4а) – 4г) необходимо воспользоваться табл.8 и сравнить величины показателей для двух признаков.
4а)-в). Для сравнения степени колеблемости значений изучаемых признаков, степени однородности совокупности по этим признакам, надежности их средних значений используются коэффициенты вариации V? признаков.
Вывод:
Так как V? для первого признака больше (меньше), чем V? для второго признака, то колеблемость значений первого признака больше (меньше) колеблемости значений второго признака, совокупность более однородна по первому (второму) признаку, среднее значение первого признака является более (менее) надежным, чем у второго признака.
4г). Сравнение симметричности распределений в центральной части ряда.
В нормальных и близких к нему распределениях основная масса единиц (68,3 %) располагается в центральной части ряда, в диапазоне ( EMBED Equation.3 ). Для оценки асимметрии распределения в этом центральном диапазоне служит коэффициент К.Пирсона Asп.
При правосторонней асимметрии Asп>0, при левосторонней – Asп<0. Если Asп=0, вариационный ряд симметричен.
Вывод:
Асимметрия распределения признака Среднегодовая стоимость основных производственных фондов в центральной части ряда является правосторонней (левосторонней), так как Asп=………. Асимметрия признака Выпуск продукции является правосторонней (левосторонней), так как Asп=…………. Сравнение абсолютных величин |Аsп| для обоих рядов показывает, что ряд распределения по признаку Среднегодовая стоимость основных производственных фондов более (менее) асимметричен, чем ряд распределения по признаку Выпуск продукции.
Задача 5. Интервальный вариационный ряд распределения единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов представлен в табл.7, а его гистограмма и кумулята – на рис.2.
Возможность отнесения распределения признака «Среднегодовая стоимость основных производственных фондов» к семейству нормальных распределений устанавливается путем анализа формы гистограммы распределения. Анализируются количество вершин в гистограмме, ее асимметричность и выраженность «хвостов», т.е. частоты появления в распределении значений, выходящих за диапазон ( EMBED Equation.3 ).
1. При анализе формы гистограммы прежде всего следует оценить распределение вариантов признака по интервалам (группам). Если на гистограмме четко прослеживаются два-три «горба» частот вариантов, это говорит о том, что значения признака концентрируются сразу в нескольких интервалах, что не соответствует нормальному закону распределения.
Если гистограмма имеет одновершинную форму, есть основания предполагать, что выборочная совокупность может иметь характер распределения, близкий к нормальному.
2. Для дальнейшего анализа формы распределения используются описательные параметры выборки - показатели центра распределения (EMBED Equation.3, Mo, Me), вариации (EMBED Equation.3), асимметрии в центральной части распределения (AsП). Совокупность этих показателей позволяет дать качественную оценку близости эмпирических данных к нормальной форме распределения.
Нормальное распределение является симметричным, и для него выполняются соотношения:
EMBED Equation.3=Mo=Me, Asп=0.
Нарушение этих соотношений свидетельствует о наличии асимметрии распределения. Распределения с небольшой или умеренной асимметрией в большинстве случаев относятся к нормальному типу.
3. Согласно правилу «3-х сигм» в нормальном и близким к нему распределениях крайние значения признака (близкие к хmin и хmax) встречаются много реже (5-7 % всех случаев), чем лежащие в диапазоне ( EMBED Equation.3 ). Следовательно, по проценту выхода значений признака за пределы диапазона ( EMBED Equation.3 ) можно судить о соответствии длины «хвостов» распределения нормальному закону.
Вывод:
1. Гистограмма является одновершинной (многовершинной).
2. Распределение приблизительно симметрично (существенно асимметрично), так как Asп=…… параметры EMBED Equation.3, Mo, Me отличаются незначительно (значительно):
EMBED Equation.3= .............., Mo=.............., Me=..............
3. “Хвосты” распределения не очень длинны (являются длинными), т.к. согласно графе 5 табл.9…..……% вариантов лежат за пределами интервала ( EMBED Equation.3 )=……………………..
Следовательно, на основании п.п. 1,2,3, можно (нельзя) сделать заключение о близости изучаемого распределения к нормальному.
II. Статистический анализ генеральной совокупности
Задача 1. Рассчитанные в табл.3 генеральные показатели представлены в табл.10.
Таблица 10
Описательные статистики генеральной совокупности
Для нормального распределения справедливо равенство RN=6?N.
В условиях близости распределения единиц генеральной совокупности к нормальному это соотношение используется для прогнозной оценки размаха вариации признака в генеральной совокупности.
Ожидаемый размах вариации признаков RN:
- для первого признака RN =………,
- для второго признака RN =……….
Соотношение между генеральной и выборочной дисперсиями:
- для первого признака EMBED Equation.3=……………, т.е. расхождение между дисперсиями незначительное (значительное);
-для второго признака EMBED Equation.3=…………….., т.е. расхождение между дисперсиями незначительное (значительное).
Задача 2. Применение выборочного метода наблюдения связано с измерением степени достоверности статистических характеристик генеральной совокупности, полученных по результатам выборочного наблюдения. Достоверность генеральных параметров зависит от репрезентативности выборки, т.е. от того, насколько полно и адекватно представлены в выборке статистические свойства генеральной совокупности.
Как правило, статистические характеристики выборочной и генеральной совокупностей не совпадают, а отклоняются на некоторую величину ?, которую называют ошибкой выборки (ошибкой репрезентативности). Ошибка выборки – это разность между значением показателя, который был получен по выборке, и генеральным значением этого показателя. Например, разность
EMBED Equation.3= |EMBED Equation.3-EMBED Equation.3|
определяет ошибку репрезентативности для средней величины признака.
Для среднего значения признака средняя ошибка выборки EMBED Equation.3 (ее называют также стандартной ошибкой) выражает среднее квадратическое отклонение ? выборочной средней EMBED Equation.3 от математического ожидания M[EMBED Equation.3] генеральной средней EMBED Equation.3.
Для изучаемых признаков средние ошибки выборки EMBED Equation.3 даны в табл. 3:
- для признака Среднегодовая стоимость основных производственных фондов
EMBED Equation.3=………,
- для признака Выпуск продукции
EMBED Equation.3=………
Предельная ошибка выборки EMBED Equation.3 определяет границы, в пределах которых лежит генеральная средняя EMBED Equation.3. Эти границы задают так называемый доверительный интервал генеральной средней EMBED Equation.3 – случайную область значений, которая с вероятностью P, близкой к 1, гарантированно содержит значение генеральной средней. Эту вероятность называют доверительной вероятностью или уровнем надежности.
Для уровней надежности P=0,954; P=0,683, P=0,997 оценки предельных ошибок выборки EMBED Equation.3 даны в табл. 3, табл. 4а и табл. 4б.
Для генеральной средней предельные значения и доверительные интервалы определяются выражениями:
EMBED Equation.3,
EMBED Equation.3
Предельные ошибки выборки и ожидаемые границы для генеральных средних представлены в табл. 11.
Таблица 11
Предельные ошибки выборки и ожидаемые границы для генеральных средних
Вывод:
Увеличение уровня надежности ведет к расширению (сужению) ожидаемых границ для генеральных средних.
Задача 3. Рассчитанные в табл.3 значения коэффициентов асимметрии As и эксцесса Ek даны в табл.10.
1.Показатель асимметрии As оценивает смещение ряда распределения влево или вправо по отношению к оси симметрии нормального распределения.
Если асимметрия правосторонняя (As>0) то правая часть эмпирической кривой оказывается длиннее левой, т.е. имеет место неравенство EMBED Equation.3>Me>Mo, что означает преимущественное появление в распределении более высоких значений признака. (среднее значение EMBED Equation.3 больше серединного Me и модального Mo).
Если асимметрия левосторонняя (As<0), то левая часть эмпирической кривой оказывается длиннее правой и выполняется неравенство EMBED Equation.3<Me<Mo, означающее, что в распределении чаще встречаются более низкие значения признака (среднее значение EMBED Equation.3 меньше серединного Me и модального Mo).
Чем больше величина |As|, тем более асимметрично распределение. Оценочная шкала асимметрии:
|As| EMBED Equation.3 0,25 - асимметрия незначительная;
0,25<|As| EMBED Equation.3 0.5 - асимметрия заметная (умеренная);
|As|>0,5 - асимметрия существенная.
Вывод:
Для признака Среднегодовая стоимость основных производственных фондов наблюдается незначительная (заметная, существенная) левосторонняя (правосторонняя) асимметрия. Следовательно, в распределении преобладают ……………………………………………………………………………………………….
Для признака Выпуск продукции наблюдается незначительная (заметная, существенная) левосторонняя (правосторонняя) асимметрия. Следовательно, в распределении преобладают ………………………………………………………………
……………………………………………………………………………………………….
2.Показатель эксцесса Ek характеризует крутизну кривой распределения - ее заостренность или пологость по сравнению с нормальной кривой.
Как правило, коэффициент эксцесса вычисляется только для симметричных или близких к ним распределений.
Если Ek>0, то вершина кривой распределения располагается выше вершины нормальной кривой, а форма кривой является более островершинной, чем нормальная. Это говорит о скоплении значений признака в центральной зоне ряда распределения, т.е. о преимущественном появлении в данных значений, близких к средней величине.
Если Ek<0, то вершина кривой распределения лежит ниже вершины нормальной кривой, а форма кривой более пологая по сравнению с нормальной. Это означает, что значения признака не концентрируются в центральной части ряда, а достаточно равномерно рассеяны по всему диапазону от xmax до xmin.
Для нормального распределения Ek=0. При незначительном отклонении Ek от нуля форма кривой эмпирического распределения незначительно отличается от формы нормального распределения. Чем больше абсолютная величина |Ek|, тем существеннее распределение отличается от нормального.
Вывод:
1. Так как для признака Среднегодовая стоимость основных производственных фондов Ek>0 (Ek<0), то кривая распределения является более островершинной (пологовершинной) по сравнению с нормальной кривой. При этом Ek незначительно (значительно) отличается от нуля (Ek=|…........|) .Следовательно, по данному признаку форма кривой эмпирического распределения значительно (незначительно) отличается от формы нормального распределения.
2.Так как для признака Выпуск продукции Ek>0 (Ek<0), то кривая распределения является более островершинной (пологовершинной) по сравнению с нормальной кривой. При этом Ek незначительно (значительно) отличается от нуля (Ek=|….........|) .Следовательно, по данному признаку форма кривой эмпирического распределения значительно (незначительно) отличается от формы нормального распределения
III. Экономическая интерпретация результатов статистического исследования предприятий Выводы должны раскрывать экономический смысл результатов проведенного статистического анализа совокупности предприятий, поэтому ответы на поставленные вопросы задач 1-6, должны носить экономический характер со ссылками на результаты анализа статистических свойств совокупности (п. 1-5 для выборочной совокупности и п. 1-3 для генеральной совокупности). В Методических указаниях к лабораторной работе №1 (стр.7-9) разяснено, на основании каких статистических показателей делаются соответствующие экономические выводы. Отчет по данному разделу лабораторной работы выполняется в машинописном виде в произвольном формате.
В этой части исследования необходимо ответить на ряд вопросов.
Типичны ли образующие выборку предприятия по значениям изучаемых экономических показателей?
Каковы наиболее характерные для предприятий значения показателей среднегодовой стоимости основных фондов и выпуска продукции?
Насколько сильны различия в экономических характеристиках предприятий выборочной совокупности? Можно ли утверждать, что выборка сформирована из предприятий с достаточно близкими значениями по каждому из показателей?
Какова структура предприятий выборочной совокупности по среднегодовой стоимости основных фондов? Каков удельный вес предприятий с наибольшими, наименьшими и типичными значениями данного показатели? Какие именно это предприятия?
Носит ли распределение предприятий по группам закономерный характер и какие предприятия (с более высокой или более низкой стоимостью основных фондов) преобладают в совокупности?
Каковы ожидаемые средние величины среднегодовой стоимости основных фондов и выпуска продукции на предприятиях корпорации в целом? Какое максимальное расхождение в значениях каждого показателя можно ожидать?
Задача 1.
EMBED Excel.Chart.8 \s
Вывод: В основной своей массе, за исключением 2 предприятий (№11 и №30), предприятия, образующие выборку типичны по значениям изучаемых показателей.
Задача 2.
Вывод: По величине среднегодовой стоимости основных производственных фондов 20 предприятий (значительная часть) входят в диапазон от 1251,64 млн. руб. до 1608,36 млн. руб., характеризующий предприятия с наиболее характерными значениями показателя.
По размеру выпуска продукции 19 предприятий (значительная часть) входят в диапазон от 2013,19 млн. руб. до 2808,23 млн. руб., характеризующий предприятия с наиболее характерными значениями показателя.

Задача 3.
Вывод: Для признака Среднегодовая стоимость основных производственных фондов показатель V?=12,47 EMBED Equation.3 33%, следовательно, по данному признаку выборочная совокупность количественна однородна.
Для признака Выпуск продукции показатель V? =16,47 EMBED Equation.3 33%, следовательно, по данному признаку выборочная совокупность количественна однородна.
Максимальное расхождение в значениях показателей для признака "Среднегодовая стоимость основных производственных фондов" - 750 млн.руб.; для признака "Выпуск продукции" – 1680 млн.руб.
На основании изучения данной совокупности и полученных расчетных значений показателей можно сделать вывод о том, что различия в экономических характеристиках предприятий выборочной совокупности не сильны, и можно утверждать, что выборка сформирована из предприятий с достаточно близкими значениями по каждому из показателей.
Задача 4.
Вывод: Модальный интервал - /1355-1505/ - в него входит наибольшее число предприятий по изучаемому признаку.
- Типичные предприятия, входящие в модальный интервал: № 3,4,6, 7,9,13,14,17,25,26,28 (всего 11 предприятий)
- Предприятия, входящие в группу с наименьшей стоимостью основных фондов : № - 1, 5, 23,27 (всего 4 предприятия)
- Предприятия, входящие в группу с наибольшей стоимостью основных фондов : № - 12,16, 21 (всего 3 предприятия)
- Удельный вес предприятий модального интервала: Р = 11/30 = 0,367 или 36,7%.
- Удельный вес предприятий модального интервала c наименьшими значениями Р = 4/30 = 0,133 или 13,3%.
- Удельный вес предприятий модального интервала c наибольшими значениями Р = 3/30 = 0,1 или 10,0%.

Задача 5.
EMBED Excel.Chart.8 \s
Вывод: На основании построенной гистограммы, визуально можно предположить, что в распределении имеется определенная закономерность.
Asп = EMBED Equation.3 , распределение близко к нормальному. В совокупности доминируют предприятия с более низкой стоимостью основных фондов.
Задача 6.
Вывод: Ожидаемый размах показателей:
Для признака "Среднегодовая стоимость основных производственных фондов:
R = 1088,46-1070,16=18,3 млн. руб.
Для признака "Выпуск продукции"
R = 2423,70-2382,96=40,74 млн. руб.
- Ожидаемые границы для средних:
Для признака "Среднегодовая стоимость основных производственных фондов"
Доверительная вероятность: 0,683 1396,28-1463,72 млн. руб.
0,954 1360,95-1499,05 млн. руб.
0,997 1322,71-1537,29 млн. руб.
Для признака "Выпуск продукции":
Доверительная 0,683 2335,98-2486,16 млн. руб.
вероятность 0,954 2257,31-2564,83 млн. руб.
0.997 2172,16-2649,98 млн. руб.
- Предельные ошибки выборки:
для первого признака: для второго признака:
Доверительная
вероятность: 0,683 33,72 млн. руб. 75,09 млн. руб.
0,954 69,05 млн. руб. 153,76 млн. руб.
0,997 107,29 млн. руб. 238,91 млн. руб.
ПРИЛОЖЕНИЕ 1
Рабочий файл Лист 1 с результативными таблицами и графиками
EMBED Excel.Chart.8 \s




EMBED Excel.Chart.8 \s
EMBED MSPhotoEd.3
ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
КАФЕДРА СТАТИСТИКИ

О Т Ч Е Т
о результатах выполнения
компьютерной лабораторной работы №2
Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде MS Excel
Вариант № 13


Выполнил: ст. III курса гр. 24/1
Шалимов Ю.В.
Ф.И.О.
Проверил: Голикова Анна Викторовна
Ф.И.О.



Москва, 2007 г.
Постановка задачи
Корреляционно-регрессионный анализ взаимосвязи признаков является составной частью проводимого статистического исследования и частично использует результаты Лабораторной работы № 1.
В Лабораторной работе № 2 изучается взаимосвязь между факторным признаком Среднегодовая стоимость основных производственных фондов (признак Х) и результативным признаком Выпуск продукции (признак Y), значениями которых являются исходные данные Лабораторной работы № 1 после исключения из них аномальных значений.

В процессе статистического исследования необходимо решить ряд задач.
Установить наличие статистической связи между факторным признаком Х и результативным признаком Y:а) графическим методом;
б) методом сопоставления параллельных рядов.
Установить наличие корреляционной связи между признаками Х и Y методом аналитической группировки.
Оценить тесноту связи признаков Х и Y на основе:а) эмпирического корреляционного отношения ?;б) линейного коэффициента корреляции r.
Построить однофакторную линейную регрессионную модель связи признаков Х и Y, используя инструмент Регрессия надстройки Пакет анализа.
Оценить адекватность и практическую пригодность построенной линейной регрессионной модели, указав:
а) значимость и доверительные интервалы коэффициентов а0, а1;
б) индекс детерминации R2 и его значимость;
в) точность регрессионной модели.
Дать экономическую интерпретацию:
а) коэффициента регрессии а1;
б) коэффициента эластичности КЭ;
в) остаточных величин EMBED Equation.3 i.
Найти наиболее адекватное нелинейное уравнение регрессии с помощью средств инструмента Мастер диаграмм. Построить для этого уравнения теоретическую кривую регрессии.
II. Выводы по результатам выполнения лабораторной работы.
Задача 1. Установление наличия статистической связи между факторным признаком Х и результативным признаком Y графическим методом и методом сопоставления параллельных рядов.
Статистическая связь является разновидностью стохастической (случайной) связи, при которой с изменением факторного признака закономерным образом изменяется какой –либо из обобщающих статистических показателей распределения результативного признака.
Вывод:
Точечный график связи признаков (диаграмма рассеяния, полученная в Лабораторной работы №1 после удаления аномальных значений), а также табл.2.1, представляющая два параллельных ряда значений признаков X и Y с ранжированными значениями xi (В4:С33) показывают, что с увеличением значений факторного признака увеличиваются (уменьшаются) значения результативного признака, за исключением некоторых отклонений от общей тенденции (предприятия №№……………………………………). Это позволяет сделать вывод, что имеет (не имеет) место статистическая связь. Предположительный вид связи – линейная (нелинейная) прямая (обратная).
Задача 2. Установление наличия корреляционной связи между признаками Х и Y методом аналитической группировки.
Корреляционная связь – важнейший частный случай статистической связи, когда под воздействием вариации факторного признака Х закономерно изменяются средние значения EMBED Equation.3 результативного признака. Для выявления наличия корреляционной связи используется метод аналитической группировки.
Вывод:
Результаты выполнения аналитической группировки предприятий по факторному признаку Среднегодовая стоимость основных производственных фондов даны в табл. 2.2 Рабочего файла, которая показывает, что с увеличением факторного признака Х ……………………………………………………………………
……………………………………………………………………………………………….
Задача 3.Оценка тесноты связи признаков Х и Y:
а) на основе эмпирического корреляционного отношения.
Для анализа тесноты связи между факторным и результативным признаками рассчитывается показатель ? - эмпирическое корреляционное отношение, задаваемое формулой
EMBED Equation.3 ,
где EMBED Equation.3 и EMBED Equation.3 - соответственно межгрупповая и общая дисперсии результативного признака Y - Выпуск продукции.
Результаты выполненных расчетов представляются табл. 2.4 Рабочего файла.
Вывод:
Значение коэффициента ?=……………, что в соответствии с оценочной шкалой Чэддока говорит о …………………………степени связи изучаемых признаков.
б) на основе линейного коэффициента корреляции признаков.
В предположении, что связь между факторным и результативным признаками прямолинейная, для оценки тесноты связи на основе линейного коэффициента корреляции r был использован инструмент Корреляция надстройки Пакет анализа, в результате применения которого построена табл.2.5 Рабочего файла.
Вывод:
Значение коэффициента корреляции r=…………………….. , что в соответствии со шкалой Чэддока говорит о ..….…………………………степени связи изучаемых признаков.
Так как значение коэффициента корреляции r положительное (отрицательное), то связь между признаками ………………………………………………………………
Посредством показателя ? измеряется теснота связи любой формы, а с помощью коэффициента корреляции r – только прямолинейная, следовательно, значения ? и r совпадают только при наличии прямолинейной связи. В теории статистики установлено, что если EMBED Equation.3 , то гипотезу о прямолинейности связи можно считать подтвержденной.
Вывод:
При ?=….. ……и r= ………… величина EMBED Equation.3 = ………….., следовательно, связь между признаками X и Y предположительно прямолинейная (нелинейная).
Задача 4. Построение однофакторной линейной регрессионной модели связи изучаемых признаков с помощью инструмента Регрессия надстройки Пакет анализа.
Построение регрессионной модели заключается в определении аналитического выражения связи между факторным признаком X и результативным признаком Y.
Инструмент Регрессия производит расчет параметров а0 и а1 уравнения однофакторной линейной регрессии EMBED Equation.3 , а также вычисление ряда показателей для проверки адекватности построенного уравнения фактическим данным.
В результате работы инструмента Регрессия были получены четыре результативные таблицы 2.6 – 2.9 Рабочего файла.
Вывод:
Рассчитанные в табл.4.8 (ячейки В91 и В92) коэффициенты а0 и а1 позволяют построить линейную регрессионную модель связи изучаемых признаков в виде уравнения EMBED Equation.3 ……………………………………………………………………
Задача 5. Оценка адекватности и практической пригодности построенной линейной регрессионной модели.
Анализ адекватности регрессионной модели преследует цель оценить, насколько построенная теоретическая модель взаимосвязи признаков отражает фактическую зависимость между этими признаками, и тем самым оценить практическую пригодность синтезированной модели связи.
Оценка соответствия регрессионной модели наблюдаемым фактическим значениям признаков X и Y выполняется в 4 этапа:
оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов для заданного уровня надежности;
определение практической пригодности построенной модели на основе оценок коэффициента корреляции r и индекса детерминации R2;
проверка адекватности уравнения регрессии в целом по F-критерию Фишера;
оценка погрешности регрессионной модели.
Оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов.
Так как коэффициенты уравнения а0, а1 рассчитывались, исходя из значений признаков только 30-ти пар (xi,yi), то полученные значения коэффициентов являются лишь приближенными оценками фактических параметров связи а0, а1. Поэтому необходимо: 1) вычислить средние ошибки EMBED Equation.3 , EMBED Equation.3 найденных коэффициентов а0, а1, 2) проверить значения коэффициентов на неслучайность (т.е.узнать, насколько они типичны для всей генеральной совокупности предприятий отрасли), 3) (с заданной доверительной вероятностью) пределы, в которых могут находиться значения а0, а1 для генеральной совокупности предприятий.
Для анализа коэффициентов используется таблица, сгенерированная в диапазоне (А90:I92), в которой:
значения коэффициентов а0, а1 приведены в ячейках В91 и В92 соответственно;
рассчитанный уровень значимости коэффициентов уравнения приведен в ячейках Е91 и Е92 (термин"Р-значения");
доверительные интервалы коэффициентов с уровнем надежности Р=0,95 и Р=0,683 указаны в диапазоне ячеек F90:I92.
1.1. Определение значимости коэффициентов уравнения.
Уровень значимости – это величина ?=1-Р, где Р заданный уровень надежности (доверительная вероятность).
Если Р-значение коэффициента в результативной таблице меньше заданного уровня значимости ?=1-0,95=0,05, то этот коэффициент признается неслучайным (типичным для генеральной совокупности).
Вывод:
Для свободного члена уравнения а0 уровень значимости есть …………… Так как этот уровень меньше(больше) заданного уровня значимости ?=0,05, то коэффициент а0= ........... .... признается типичным (случайным).
Для коэффициента регрессии а1 уровень значимости есть …………… Так как этот уровень меньше(больше) заданного уровня значимости ?=0,05, то коэффициент а1= .................. признается типичным (случайным).
1.2. Оценка доверительных интервалов коэффициентов уравнения регрессии.
Доверительные интервалы коэффициентов уравнения регрессии а0, а1 при уровнях надежности Р=0,95 и Р=0,683 приведены в следующей таблице:
Вывод:
Увеличение уровня надежности ведет к расширению (сужению) доверительных интервалов коэффициентов уравнения, в которых могут находиться коэффициенты а0, а1 уравнения связи признаков для генеральной совокупности предприятий.
Определение практической пригодности построенной регрессионной модели.
В случае линейности функции связи для оценки тесноты связи признаков X и Y, устанавливаемой по модели, используется линейный коэффициент корреляции r. По величине r можно охарактеризовать практическую пригодность модели:
близость EMBED Equation.3 к единице свидетельствует о хорошей аппроксимации фактических данных полученной линейной функции связи EMBED Equation.3 = a0 + a1x;
близость EMBED Equation.3 к нулю, означает, что уравнение регрессии не может быть линейным и для моделирования связи следует использовать нелинейные зависимости.
Пригодность построенной регрессионной модели для практического использования можно оценить и по величине индекса детерминации R2, показывающего, какая часть общей вариации значений признака Y объясняется в модели вариацией фактора X:
неравенству R2 > 0,5 отвечают значения EMBED Equation.3 >0,7, что означает высокую степень тесноты связи признаков X и Y, устанавливаемую по уравнению регрессии. При этом в модели более 50% вариации значений признака Y объясняется влиянием фактора Х, что позволяет считать применение синтезированного уравнения регрессии EMBED Equation.3 правомерным;
при EMBED Equation.3 EMBED Equation.3 0,7 величина R2 всегда будет меньше 50%. Это означает, что согласно модели вариация фактора Х влияет на вариацию Y в значительно меньшей степени, чем другие (неучтенные в модели) факторы. При таких условиях построенная математическая модель связи практического значения не имеет.
Значение коэффициента корреляции r приводится в первой строке результативной таблицы "Регрессионная статистика" (термин "Множественный R"), значение индекса детерминации R2 - во второй строке этой таблицы.
Вывод:
Согласно таблице "Регрессионная статистика" r=……..., R2=………. Поскольку EMBED Equation.3 >0,7 ( EMBED Equation.3 EMBED Equation.3 0,7) и R2>0,5 (R2 EMBED Equation.3 0,5), то построенная линейная регрессионная модель связи пригодна (не пригодна) для практического использования.
Общая оценка адекватности регрессионной модели по F-критерию Фишера.
Адекватность построенной регрессионной модели фактическим данным (xi,yi) устанавливается по критерию Р.Фишера, оценивающему статистическую значимость (неслучайность) индекса детерминации R2.
Рассчитанная для уравнения оценка значимости R2 приведена в ячейке F86 (термин "Значимость F"). Если она меньше заданного уровня значимости ?=0,05, то величина R2 признается неслучайной и, следовательно, уравнение регрессии …………………… может быть использовано как модель связи между признаками Х и Y для генеральной совокупности предприятий отрасли.
Вывод:
Уровень значимости индекса детерминации R2 равен ……………… Так как этот уровень меньше(больше) заданного уровня значимости ?=0,05, то значение R2 признается типичным (случайным) и построенная модель связи между признаками Х и Y применима (неприменима) для генеральной совокупности предприятий отрасли в целом.
Оценка погрешности регрессионной модели.
Погрешность регрессионной модели можно оценить по средней квадратической ошибке EMBED Equation.3 построенного уравнения регрессии, представляющей собой среднее квадратическое отклонение эмпирических значений yi признака Y от его теоретических значений EMBED Equation.3 .
В адекватных моделях ошибка EMBED Equation.3 не должна превышать 12%-15%.
Значение EMBED Equation.3 приводится в четвертой строке выходной таблицы "Регрессионная статистика" (термин "Стандартная ошибка"), значение EMBED Equation.3 - в таблице описательных статистик (Лабораторная работа №1, табл.3).
Вывод:
Погрешность линейной регрессионной модели составляет …..%, что подтверждает (не подтверждает) адекватность модели.
Задача 6. Дать экономическую интерпретацию:
1) коэффициента регрессии а1;
2) коэффициента эластичности КЭ;
3) остаточных величин EMBED Equation.3 i.
1. Экономическая интерпретация коэффициента регрессии а1.
В случае линейного уравнения регрессии EMBED Equation.3 =a0+a1x величина коэффициента регрессии a1 показывает, на сколько в среднем (в абсолютном выражении) изменяется значения результативного признака Y при изменении фактора Х на единицу его измерения. Знак при a1 показывает направление этого изменения.
Вывод:
Коэффициент регрессии а1=……….. показывает, что ……………………………………………………………………………………………….
………………………………………………………………………………………………
2. Экономическая интерпретация коэффициента эластичности.
С целью расширения возможностей экономического анализа используется коэффициент эластичности EMBED Equation.3 , который показывает, на сколько процентов изменяется в среднем результативный признак при изменении факторного признака на 1%.
Среднее значение признаков X и Y даны в таблице описательных статистик
Вывод:
Коэффициент эластичности КЭ =…………… показывает, что ............................ ………………………………………………………………………………………………
……………………………………………………………………………………………….
3. Экономическая интерпретация остаточных величин EMBED Equation.3 i.
Каждый их остатков EMBED Equation.3 характеризует отклонение фактического значения yi от значения EMBED Equation.3 , рассчитанного по регрессионной модели и определяющего, какое среднее значение EMBED Equation.3 следует ожидать для факторного признака xi.
Анализируя остатки, можно сделать ряд практических выводов, касающихся выпуска продукции на рассматриваемых предприятиях отрасли.
Значения остатков EMBED Equation.3 i (таблица остатков из диапазона А98:С128) имеют как положительные, так и отрицательные отклонения от ожидаемого в среднем объема выпуска продукции EMBED Equation.3 (которые в итоге уравновешиваются, т.е. EMBED Equation.3 ).
Экономический интерес представляют наибольшие отклонения от среднего объема EMBED Equation.3 как в положительную, так и в отрицательную сторону.
Вывод:
Согласно таблице остатков, в построенной линейной регрессионной модели наибольшее превышение среднего объема выпускаемой продукции EMBED Equation.3 имеют три предприятия - с номерами……, ……, …….., а наибольшие отрицательные отклонения от среднего объема выпуска - три предприятия с номерами……, ……, …….. .Именно эти шесть предприятий подлежат дальнейшему экономическому анализу для выяснения причин наибольших отклонений объема выпускаемого продукта от ожидаемого среднего объема и выявления резервов роста производства.
Задача 7. Нахождение наиболее адекватного нелинейного уравнения регрессии с помощью средств инструмента Мастер диаграмм. Построение для этого уравнения теоретической кривой регрессии.
Уравнения регрессии и их графики построены для 4-х видов нелинейной зависимости между признаками и представлены на диаграмме 2.1 Рабочего файла.
Уравнения регрессии и соответствующие им индексы детерминации R2 приведены в следующей таблице:
Регрессионные модели связи Коэффициенты уравнений необходимо указывать не в компьютерном формате, а в общепринятой десятичной форме чисел.
Выбор наиболее адекватного уравнения регрессии определяется максимальным значением индекса детерминации R2: чем ближе значение R2 к единице, тем более точно регрессионная модель соответствует фактическим данным.
Вывод:
Максимальное значение индекса детерминации R2 =…………............, следовательно, наиболее адекватное нелинейное уравнения регрессии – ………………………………………………………………………………………………
Это уравнение регрессии и его график приведены на рис.2.2 Рабочего файла.
ПРИЛОЖЕНИЕ 2
Рабочий файл Лист2 с результативными таблицами и графиками Все рисунки и графики должны быть подписаны и пронумерованы
.


Выходные таблицы
ВЫВОД ИТОГОВ
Дисперсионный анализ

ВЫВОД ОСТАТКА

EMBED Excel.Chart.8 \s
Рис. 2.
EMBED Excel.Chart.8 \s Рис. 2.1 EMBED Excel.Chart.8 \s Рис. 2.2