EMBED MSPhotoEd.3
ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
КАФЕДРА СТАТИСТИКИ
О Т Ч Е Т
о результатах выполнения
компьютерной лабораторной работы № 2
Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде MS Excel
Вариант № _12___
Выполнил: студентка ФНО, 4поток
Поздеева Екатерина Викторовна
Проверил: Пампушина С. Н.
Архангельск
2008г.
1. Постановка задачи статистического исследования
Корреляционно-регрессионный анализ взаимосвязи признаков является составной частью проводимого статистического исследования деятельности 30-ти предприятий и частично использует результаты ЛР-1.
В ЛР-2 изучается взаимосвязь между факторным признаком Среднегодовая стоимость основных производственных фондов (признак Х) и результативным признаком Выпуск продукции (признак Y), значениями которых являются исходные данные ЛР-1 после исключения из них аномальных наблюдений.
В процессе статистического исследования необходимо решить ряд задач.
Установить наличие статистической связи между факторным признаком Х и результативным признаком Y графическим методом.
Установить наличие корреляционной связи между признаками Х и Y методом аналитической группировки.
Оценить тесноту связи признаков Х и Y на основе эмпирического корреляционного отношения ?.
Построить однофакторную линейную регрессионную модель связи признаков Х и Y, используя инструмент Регрессия надстройки Пакет анализа, и оценить тесноту связи признаков Х и Y на основе линейного коэффициента корреляции r.
Определить адекватность и практическую пригодность построенной линейной регрессионной модели, оценив:
а) значимость и доверительные интервалы коэффициентов а0, а1;
б) индекс детерминации R2 и его значимость;
в) точность регрессионной модели.
Дать экономическую интерпретацию:
а) коэффициента регрессии а1;
б) коэффициента эластичности КЭ;
в) остаточных величин ?i.
Найти наиболее адекватное нелинейное уравнение регрессии с помощью средств инструмента Мастер диаграмм. Построить для этого уравнения теоретическую кривую регрессии.
2. Выводы по результатам выполнения лабораторной работы Все статистические показатели необходимо представить в таблицах с точностью до 4-х знаков после запятой. Таблицы и пробелы в формулировках выводов заполнять вручную. В выводах при выборе альтернативного варианта ответа ненужный вариант вычеркивается.
Задача 1. Установление наличия статистической связи между факторным признаком Х и результативным признаком Y графическим методом.
Статистическая связь является разновидностью стохастической (случайной) связи, при которой с изменением факторного признака X закономерным образом изменяется какой–либо из обобщающих статистических показателей распределения результативного признака Y.
Вывод:
Точечный график связи признаков (диаграмма рассеяния, полученная в ЛР-1 после удаления аномальных наблюдений) позволяет сделать вывод, что имеет место статистическая связь. Предположительный вид связи – линейная прямая.
Задача 2. Установление наличия корреляционной связи между признаками Х и Y методом аналитической группировки.
Корреляционная связь – важнейший частный случай стохастической статистической связи, когда под воздействием вариации факторного признака Х закономерно изменяются средние значения EMBED Equation.3 результативного признака Y (усредняются значения EMBED Equation.3 в каждой j-ой группе, полученные под воздействием на Y фактора EMBED Equation.DSMT4 ). Для выявления наличия корреляционной связи используется метод аналитической группировки.
Вывод:
Аналитическая группировка предприятий по факторному признаку Среднегодовая стоимость основных производственных фондов, построенная в табл. 2.2 Рабочего файла EXCEL, показывает, что с увеличением значения факторного признака Х-стоимости ОПФ закономерно увеличивается среднее значение результативного признака Y-выпуска продукции. Следовательно, между признаками Х- стоимость ОПФ и Y-выпуск продукции существует корреляционная связь.
Задача 3.Оценка тесноты связи признаков Х и Y на основе эмпирического корреляционного отношения.
Для анализа тесноты связи между факторным и результативным признаками рассчитывается показатель ? – эмпирическое корреляционное отношение, задаваемое формулой
EMBED Equation.3 ,
где EMBED Equation.3 и EMBED Equation.3 - соответственно межгрупповая и общая дисперсии результативного признака Y - Выпуск продукции (индекс х дисперсии EMBED Equation.3 означает, что оценивается мера влияния признака Х на Y).
Для качественной оценки тесноты связи на основе показателя эмпирического корреляционного отношения служит шкала Чэддока:
Результаты выполненных расчетов представлены в табл. 2.4 Рабочего файла.
Вывод:
Значение коэффициента ? =0,9, что в соответствии с оценочной шкалой Чэддока говорит о весьма тесной степени связи изучаемых признаков.
Задача 4. Построение однофакторной линейной регрессионной модели связи изучаемых признаков с помощью инструмента Регрессия надстройки Пакет анализа и оценка тесноты связи на основе линейного коэффициента корреляции r.
4.1. Построение регрессионной модели заключается в нахождении аналитического выражения связи между факторным признаком X и результативным признаком Y.
Инструмент Регрессия на основе исходных данных (xi , yi), производит расчет параметров а0 и а1 уравнения однофакторной линейной регрессии EMBED Equation.3 , а также вычисление ряда показателей, необходимых для проверки адекватности построенного уравнения исходным (фактическим) данным.
Примечание. В результате работы инструмента Регрессия получены четыре результативные таблицы (начиная с заданной ячейки А75). Эти таблицы выводятся в Рабочий файл без нумерации, поэтому необходимо присвоить им номера табл.2.5 – табл.2.8 в соответствии с их порядком.
Вывод:
Рассчитанные в табл.2.7 (ячейки В91 и В92) коэффициенты а0 и а1 позволяют построить линейную регрессионную модель связи изучаемых признаков в виде уравнения EMBED Equation.3 -143,64+1,09 х.
4.2. В случае линейности функции связи для оценки тесноты связи признаков X и Y, устанавливаемой по построенной модели, используется линейный коэффициент корреляции r.
Значение коэффициента корреляции r приводится в табл.2.5 в ячейке В78 (термин "Множественный R").
Вывод:
Значение коэффициента корреляции r =0,91, что в соответствии с оценочной шкалой Чэддока говорит о тесной степени связи изучаемых признаков.
Задача 5. Анализ адекватности и практической пригодности построенной линейной регрессионной модели.
Анализ адекватности регрессионной модели преследует цель оценить, насколько построенная теоретическая модель взаимосвязи признаков отражает фактическую зависимость между этими признаками, и тем самым оценить практическую пригодность синтезированной модели связи.
Оценка соответствия построенной регрессионной модели исходным (фактическим) значениям признаков X и Y выполняется в 4 этапа:
оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов для заданного уровня надежности;
определение практической пригодности построенной модели на основе оценок линейного коэффициента корреляции r и индекса детерминации R2;
проверка значимости уравнения регрессии в целом по F-критерию Фишера;
оценка погрешности регрессионной модели.
Оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов
Так как коэффициенты уравнения а0 , а1 рассчитывались, исходя из значений признаков только для 30-ти пар (xi , yi), то полученные значения коэффициентов являются лишь приближенными оценками фактических параметров связи а0 , а1. Поэтому необходимо:
проверить значения коэффициентов на неслучайность (т.е. узнать, насколько они типичны для всей генеральной совокупности предприятий отрасли);
определить (с заданной доверительной вероятностью 0,95 и 0,683) пределы, в которых могут находиться значения а0, а1 для генеральной совокупности предприятий.
Для анализа коэффициентов а0, а1 линейного уравнения регрессии используется табл.2.7, в которой:
– значения коэффициентов а0, а1 приведены в ячейках В91 и В92 соответственно;
– рассчитанный уровень значимости коэффициентов уравнения приведен в ячейках Е91 и Е92;
– доверительные интервалы коэффициентов с уровнем надежности Р=0,95 и Р=0,683 указаны в диапазоне ячеек F91:I92.
5.1.1. Определение значимости коэффициентов уравнения
Уровень значимости – это величина ?=1–Р, где Р – заданный уровень надежности (доверительная вероятность).
Режим работы инструмента Регрессия использует по умолчанию уровень надежности Р=0,95. Для этого уровня надежности уровень значимости равен
?=1-0,95 = 0,05. Этот уровень значимости считается заданным.
В инструменте Регрессия надстройки Пакет анализа для каждого из коэффициентов а0 и а1 вычисляется уровень его значимости ?р, который указан в результативной таблице (табл.2.7 термин "Р-значение"). Если для коэффициентов а0, а1 рассчитанный уровень значимости ?р, меньше заданного уровня значимости ?=0,05, то этот коэффициент признается неслучайным (т.е. типичным для генеральной совокупности), в противном случае – случайным.
Примечание. В случае, если признается случайным свободный член а0, то уравнение регрессии целесообразно построить заново без свободного члена а0. В этом случае в диалоговом окне Регрессия необходимо задать те же самые параметры за исключением лишь того, что следует активизировать флажок Константа-ноль (это означает, что модель будет строиться при условии а0=0). В лабораторной работе такой шаг не предусмотрен.
Если незначимым (случайным) является коэффициент регрессии а1, то взаимосвязь между признаками X и Y в принципе не может аппроксимироваться линейной моделью.
Вывод:
Для свободного члена а0 уравнения регрессии рассчитанный уровень значимости есть ?р =0,12 Так как он больше заданного уровня значимости ?=0,05, то коэффициент а0 признается случайным.
Для коэффициента регрессии а1 рассчитанный уровень значимости есть ?р = 1,98 Так как он больше заданного уровня значимости ?=0,05, то коэффициент а1 признается случайным.
5.1.2. Зависимость доверительных интервалов коэффициентов уравнения от заданного уровня надежности
Доверительные интервалы коэффициентов а0, а1 построенного уравнения регрессии при уровнях надежности Р=0,95 и Р=0,683 представлены в табл.2.7, на основе которой формируется табл.2.9.
Таблица 2.9 - Границы доверительных интервалов коэффициентов уравнения
Вывод:
В генеральной совокупности предприятий значение коэффициента а0 следует ожидать с надежностью Р=0,95 в пределах 328,86 EMBED Equation.3 а0 EMBED Equation.3 41,58, значение коэффициента а1 в пределах 0,90 EMBED Equation.3 а1 EMBED Equation.3 1,28. Уменьшение уровня надежности ведет к сужению доверительных интервалов коэффициентов уравнения.
Определение практической пригодности построенной регрессионной модели.
Практическую пригодность построенной модели EMBED Equation.3 можно охарактеризовать по величине линейного коэффициента корреляции r:
близость EMBED Equation.3 к единице свидетельствует о хорошей аппроксимации исходных (фактических) данных с помощью построенной линейной функции связи EMBED Equation.3 ;
близость EMBED Equation.3 к нулю означает, что связь между фактическими данными Х и Y нельзя аппроксимировать как построенной, так и любой другой линейной моделью, и, следовательно, для моделирования связи следует использовать какую-либо подходящую нелинейную модель.
Пригодность построенной регрессионной модели для практического использования можно оценить и по величине индекса детерминации R2, показывающего, какая часть общей вариации признака Y объясняется в построенной модели вариацией фактора X.
В основе такой оценки лежит равенство R = r (имеющее место для линейных моделей связи), а также шкала Чэддока, устанавливающая качественную характеристику тесноты связи в зависимости от величины r.
Согласно шкале Чэддока высокая степень тесноты связи признаков достигается лишь при EMBED Equation.3 >0,7, т.е. при EMBED Equation.3 >0,7. Для индекса детерминации R2 это означает выполнение неравенства R2 >0,5.
При недостаточно тесной связи признаков X, Y (слабой, умеренной, заметной) имеет место неравенство EMBED Equation.3 EMBED Equation.3 0,7, а следовательно, и неравенство EMBED Equation.3 .
С учетом вышесказанного, практическая пригодность построенной модели связи EMBED Equation.3 оценивается по величине R2 следующим образом:
неравенство R2 >0,5 позволяет считать, что построенная модель пригодна для практического применения, т.к. в ней достигается высокая степень тесноты связи признаков X и Y, при которой более 50% вариации признака Y объясняется влиянием фактора Х;
неравенство EMBED Equation.3 означает, что построенная модель связи практического значения не имеет ввиду недостаточной тесноты связи между признаками X и Y, при которой менее 50% вариации признака Y объясняется влиянием фактора Х, и, следовательно, фактор Х влияет на вариацию Y в значительно меньшей степени, чем другие (неучтенные в модели) факторы.
Значение индекса детерминации R2 приводится в табл.2.5 в ячейке В79 (термин "R - квадрат").
Вывод:
Значение линейного коэффициента корреляции r и значение индекса детерминации R2 согласно табл. 2.5 равны: r =0,91, R2 = 0,83. Поскольку EMBED Equation.3 и EMBED Equation.3 , то построенная линейная регрессионная модель связи пригодна для практического использования.
Общая оценка адекватности регрессионной модели по F-критерию Фишера
Адекватность построенной регрессионной модели фактическим данным (xi, yi) устанавливается по критерию Р.Фишера, оценивающему статистическую значимость (неслучайность) индекса детерминации R2.
Рассчитанная для уравнения регрессии оценка значимости R2 приведена в табл.2.6 в ячейке F86 (термин "Значимость F"). Если она меньше заданного уровня значимости ? =0,05, то величина R2 признается неслучайной и, следовательно, построенное уравнение регрессии EMBED Equation.3 может быть использовано как модель связи между признаками Х и Y для генеральной совокупности предприятий отрасли.
Вывод:
Рассчитанный уровень значимости ?р индекса детерминации R2 есть ?р=1,98 Так как он больше заданного уровня значимости ?=0,05, то значение R2 признается случайным и модель связи между признаками Х и Y EMBED Equation.3 -143,64 + 1,09х неприменима для генеральной совокупности предприятий отрасли в целом.
Оценка погрешности регрессионной модели
Погрешность регрессионной модели можно оценить по величине стандартной ошибки EMBED Equation.3 построенного линейного уравнения регрессии EMBED Equation.3 . Величина ошибки EMBED Equation.3 оценивается как среднее квадратическое отклонение по совокупности отклонений EMBED Equation.3 исходных (фактических) значений yi признака Y от его теоретических значений EMBED Equation.3 , рассчитанных по построенной модели.
Погрешность регрессионной модели выражается в процентах и рассчитывается как величина EMBED Equation.3 .100.
В адекватных моделях погрешность не должна превышать 12%-15%.
Значение EMBED Equation.3 приводится в выходной таблице "Регрессионная статистика" (табл.2.5) в ячейке В81 (термин "Стандартная ошибка"), значение EMBED Equation.3 – в ячейке E47.
Вывод:
Погрешность линейной регрессионной модели составляет EMBED Equation.3 .100=83,73/2814,17*100= 2,98 %, что подтверждает адекватность построенной модели EMBED Equation.3 -143,64 + 1,09х
Задача 6. Дать экономическую интерпретацию:
1) коэффициента регрессии а1;
3) остаточных величин EMBED Equation.3 i.
2) коэффициента эластичности КЭ;
6.1. Экономическая интерпретация коэффициента регрессии а1
В случае линейного уравнения регрессии EMBED Equation.3 =a0+a1x величина коэффициента регрессии a1 показывает, на сколько в среднем (в абсолютном выражении) изменяется значение результативного признака Y при изменении фактора Х на единицу его измерения. Знак при a1 показывает направление этого изменения.
Вывод:
Коэффициент регрессии а1 = -143,64 показывает, что при увеличении факторного признака Среднегодовая стоимость основных производственных фондов на 1 млн. руб. значение результативного признака Выпуск продукции увеличивается (уменьшается) в среднем на1,09млн. руб.
6.2. Экономическая интерпретация коэффициента эластичности.
С целью расширения возможностей экономического анализа явления используется коэффициент эластичности EMBED Equation.3 , который измеряется в процентах и показывает, на сколько процентов изменяется в среднем результативный признак при изменении факторного признака на 1%.
Средние значения EMBED Equation.3 и EMBED Equation.3 приведены в таблице описательных статистик (ЛР-1, Лист 1, табл.3, ячейки B50 и D50).
Расчет коэффициента эластичности:
EMBED Equation.3 =1,09 * 980,5/ 906,5= 117,9%
Вывод:
Значение коэффициента эластичности Кэ= 1,18 показывает, что при увеличении факторного признака Среднегодовая стоимость основных производственных фондов на 1% значение результативного признака Выпуск продукции увеличивается в среднем на 18%.
6.3. Экономическая интерпретация остаточных величин ?i
Каждый их остатков EMBED Equation.3 характеризует отклонение фактического значения yi от теоретического значения EMBED Equation.3 , рассчитанного по построенной регрессионной модели и определяющего, какого среднего значения EMBED Equation.3 следует ожидать, когда фактор Х принимает значение xi.
Анализируя остатки, можно сделать ряд практических выводов, касающихся выпуска продукции на рассматриваемых предприятиях отрасли.
Значения остатков EMBED Equation.3 i (таблица остатков из диапазона А98:С128) имеют как положительные, так и отрицательные отклонения от ожидаемого в среднем объема выпуска продукции EMBED Equation.3 (которые в итоге уравновешиваются, т.е. EMBED Equation.3 ).
Экономический интерес представляют наибольшие расхождения между фактическим объемом выпускаемой продукции yi и ожидаемым усредненным объемом EMBED Equation.3 .
Вывод:
Согласно таблице остатков максимальное превышение ожидаемого среднего объема выпускаемой продукции EMBED Equation.3 имеют три предприятия - с номерами 19,20,29,а максимальные отрицательные отклонения - три предприятия с номерами 7,15,32.Именно эти шесть предприятий подлежат дальнейшему экономическому анализу для выяснения причин наибольших отклонений объема выпускаемой ими продукции от ожидаемого среднего объема и выявления резервов роста производства.
Задача 7. Нахождение наиболее адекватного нелинейного уравнения регрессии с помощью средств инструмента Мастер диаграмм. Построение для этого уравнения теоретической кривой регрессии.
Уравнения регрессии и их графики построены для 3-х видов нелинейной зависимости между признаками и представлены на диаграммах Рабочего файла EXCEL.
Уравнения регрессии и соответствующие им индексы детерминации R2 приведены в табл.2.10 (при заполнении данной таблицы коэффициенты уравнений необходимо указывать не в компьютерном формате, а в общепринятой десятичной форме чисел).
Таблица 2.10 - Регрессионные модели связи
Выбор наиболее адекватного уравнения регрессии определяется максимальным значением индекса детерминации R2: чем ближе значение R2 к единице, тем более точно регрессионная модель соответствует фактическим данным.
Вывод:
Максимальное значение индекса детерминации R2 =0,898 Следовательно, наиболее адекватное исходным данным нелинейное уравнение регрессии имеет вид EMBED Equation.3 2Е-0,6 х3 – 0,004 х2 + 4,981х - 1269
Это уравнение регрессии и его график приведены на рис.2.2 Полином 3-го порядка..