ЗАДАЧА 1
По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпускаемой продукции (Y, млн. руб.) от объема капиталовложений (X, млн. руб.):
№ предприятия
X
Y

1
12
21

2
4
10

3
18
26

4
27
33

5
26
34

6
29
37

7
1
9

8
13
21

9
26
32

10
5
14


Требуется:
Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию углового коэффициента регрессии.
Вычислить остатки; найти остаточную сумму квадратов; определить стандартную ошибку регрессии; построить график остатков.
Проверить выполнение предпосылок метода наименьших квадратов.
Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента (уровень значимости (=0,05).
Вычислить коэффициент детерминации R2; проверить значимость уравнения регрессии с помощью F-критерия Фишера (уровень значимости (=0,05); найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели.
Осуществить прогнозирование значения показателя Y при уровне значимости (=0,1, если прогнозное значения фактора Х составит 80 % от его максимального значения.
Представить графически: фактические и модельные значения Y, точки прогноза.
Составить уравнения нелинейной регрессии:
логарифмической;
степенной;
показательной.
Привести графики построенных уравнений регрессии.
Для указанных моделей найти коэффициенты детерминации и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать вывод.
РЕШЕНИЕ
Для решения задачи используется табличный процессор EXCEL.
1. С помощью надстройки «Анализ данных» EXCEL проводим регрессионный анализ и определяем параметры уравнения линейной регрессии (меню «Сервис» ( «Анализ данных…» ( «Регрессия»):

(Для копирования снимка окна в буфер обмена данных WINDOWS используется комбинация клавиш Alt+Print Screen.)
В результате этого уравнение регрессии будет иметь вид:
(прил. 1).
Угловой коэффициент b1=0,968 является по своей сути средним абсолютным приростом. Его значение показывает, что при увеличении объема капиталовложений X на 1 млн. руб. объем выпускаемой продукции Y возрастает в среднем на 0,968 млн. руб.
2. При проведении регрессионного анализа в EXCEL одновременно были определены остатки регрессии (i=1, 2, …, n, где n=10 — число наблюдений значений переменных X и Y) (см. «Вывод остатка» в прил. 1) и рассчитана остаточная сумма квадратов

(см. «Дисперсионный анализ» в прил. 1).
Стандартная ошибка линейной парной регрессии Sрег определена там же:
млн. руб.
(см. «Регрессионную статистику» в прил. 1), где p=1 — число факторов в регрессионной модели.
График остатков ei от предсказанных уравнением регрессии значений результата (i=1, 2, …, n) строим с помощью диаграммы EXCEL. Предварительно в «Выводе остатка» прил. 1 выделяются блоки ячеек «Предсказанное Y» и «Остатки» вместе с заголовками, а затем выбирается пункт меню «Вставка» ( «Диаграмма…» ( «Точечная»:

График остатков приведен в прил. 2.
3. Проверим выполнение предпосылок обычного метода наименьших квадратов.
1) Случайный характер остатков. Визуальный анализ графика остатков не выявляет в них какой-либо явной закономерности.
Проверим исходные данные на наличие аномальных наблюдений объема выпускаемой продукции Y (выбросов). С этой целю сравним абсолютные величины стандартизированных остатков (см. «Вывод остатка» в прил. 1) с табличным значением t-критерия Стьюдента для уровня значимости (=0,05 и числа степеней свободы остатка регрессии , которое составляет tтаб=2,306.
Видно, что ни один из стандартизированных остатков не превышает по абсолютной величине табличное значение t-критерия Стьюдента. Это свидетельствует об отсутствии выбросов.
2) Нулевая средняя величина остатков. Данная предпосылка всегда выполняется для линейных моделей со свободным коэффициентом b0, параметры которых оцениваются обычным методом наименьших квадратов. В нашей модели алгебраическая сумма остатков и, следовательно, их среднее, равны нулю: (см. прил. 1).
Для вычисления суммы и среднего значений остатков использовались встроенные функции EXCEL «СУММ» и «СРЗНАЧ».
3) Одинаковая дисперсия (гомоскедастичность) остатков. Выполнение данной предпосылки проверим методом Глейзера в предположении линейной зависимости среднего квадратического отклонения возмущений от предсказанных уравнением регрессии значений результата (i=1, 2, …, n). Для этого рассчитывается коэффициент корреляции между абсолютными величинами остатков и (i=1, 2, …, n) с помощью выражения, составленного из встроенных функций:
=КОРРЕЛ(ABS(«Остатки»);«Предсказанное Y»)
Коэффициент корреляции оказался равным (см. прил. 1).
Критическое значение коэффициента корреляции для уровня значимости (=0,05 и числа степеней свободы составляет rкр=0,632.
Так как коэффициент корреляции не превышает по абсолютной величине критическое значение, то статистическая гипотеза об одинаковой дисперсии остатков не отклоняется на уровне значимости (=0,05.
4) Отсутствие автокорреляции в остатках. Выполнение данной предпосылки проверяем методом Дарбина–Уотсона. Предварительно ряд остатков упорядочивается в зависимости от последовательно возрастающих значений результата Y, предсказанных уравнением регрессии. Для этой цели в «Выводе остатка» прил. 1 выделяется любая ячейка в столбце «Предсказанное Y», и на панели инструментов нажимается кнопка «» («Сортировка по возрастанию»). По упорядоченному ряду остатков рассчитываем dстатистику Дарбина–Уотсона
(см. прил. 1).
Для расчета dстатистики использовалось выражение, составленное из встроенных функций EXCEL:
=СУММКВРАЗН(«Остатки 2, …, n»; «Остатки 1, …, n–1»)/СУММКВ(«Остатки 1, …,n»)
Критические значения dстатистики для числа наблюдений n=10, числа факторов p=1 и уровня значимости (=0,05 составляют: d1=0,88; d2=1,32.
Так как выполняется условие
,
статистическая гипотеза об отсутствии автокорреляции в остатках не отклоняется на уровне значимости (=0,05.
Проверим отсутствие автокорреляции в остатках также и по коэффициенту автокорреляции остатков первого порядка
(см. прил. 1).
(ряд остатков упорядочен в той же самой последовательности).
Для расчета коэффициента автокорреляции использовалось выражение, составленное из встроенных функций:
=СУММПРОИЗВ(«Остатки 2, …, n»; «Остатки 1, …, n–1»)/СУММКВ(«Остатки 1, …,n»)
Критическое значение коэффициента автокорреляции для числа наблюдений n=10 и уровня значимости (=0,05 составляет r(1)кр=0,632. Так как коэффициент автокорреляции остатков первого порядка не превышает по абсолютной величине критическое значение, то это еще раз указывает на отсутствие автокорреляции в остатках.
5) Нормальный закон распределения остатков. Выполнение этой предпосылки проверяем с помощью R/S-критерия, определяемого по формуле
,
где emax=1,27; emin=(–1,99) — наибольший и наименьший остатки соответственно (определялись с помощью встроенных функций «МАКС» и «МИН»); — стандартное отклонение ряда остатков (определено с помощью встроенной функции «СТАНДОТКЛОН») (см. прил. 1).
Критические границы R/S-критерия для числа наблюдений n=10 и уровня значимости (=0,05 имеют значения: (R/S)1=2,67 и (R/S)2=3,69.
Так как расчетное значение R/S-критерия попадает в интервал между критическими границами, то статистическая гипотеза о нормальном законе распределения остатков не отклоняется на уровне значимости (=0,05.
Проведенная проверка показала, что выполняются все пять предпосылок обычного метода наименьших квадратов. Это свидетельствует об адекватности регрессионной модели исследуемому экономическому явлению.
4. Проверим статистическую значимость коэффициентов b0 и b1 уравнения регрессии. Табличное значение t-критерия Стьюдента для уровня значимости (=0,05 и числа степеней свободы остатка линейной парной регрессии составляет tтаб=2,306.
t-статистики коэффициентов
,
были определены при проведении регрессионного анализа в EXCEL и имеют следующие значения: tb0(11,41; tb1(25,81 (см. прил. 1). Анализ этих значений показывает, что по абсолютной величине все они превышают табличное значение t-критерия Стьюдента. Это свидетельствует о статистической значимости обоих коэффициентов. На то же самое обстоятельство указывают и вероятности случайного формирования коэффициентов b0 и b1, которые ниже допустимого уровня значимости (=0,05 (см. «PЗначение»).
Статистическая значимость углового коэффициента b1 дает основание говорить о существенном (значимом) влиянии изменения объема капиталовложений X на изменение объема выпускаемой продукции Y.
5. Коэффициент дет