ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
КАФЕДРА СТАТИСТИКИ
О Т Ч Е Т
о результатах выполнения
компьютерной лабораторной работы
Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде MS Excel
Вариант № 3
Выполнил: ст. III курса гр. ФК-2
Проверил: доцент Лосева О.В.
Пенза, 2008г.
1. Постановка задачи статистического исследования
Корреляционно-регрессионный анализ взаимосвязи признаков является составной частью проводимого статистического исследования деятельности 30-ти предприятий и частично использует результаты ЛР-1.
В ЛР-2 изучается взаимосвязь между факторным признаком Среднегодовая стоимость основных производственных фондов (признак Х) и результативным признаком Выпуск продукции (признак Y), значениями которых являются исходные данные ЛР-1 после исключения из них аномальных наблюдений.
Исходные данные

Номер предприятия
Среднегодовая стоимость основных производственных фондов, млн. руб.
Выпуск продукции, млн. руб.

5
215,00
175,00

23
232,50
232,50

27
252,50
200,00

1
260,00
257,50

8
270,00
275,00

32
275,00
290,00

22
295,00
247,50

19
302,50
237,50

2
307,50
282,50

3
317,50
315,00

13
320,00
335,00

26
327,50
307,50

9
332,50
322,50

4
335,00
350,00

28
342,50
312,50

17
345,00
320,00

6
352,50
300,00

14
352,50
365,00

25
352,50
325,00

7
362,50
405,00

31
377,50
325,00

18
382,50
380,00

10
385,00
402,50

20
387,50
325,00

24
395,00
372,50

29
397,50
342,50

15
405,00
442,50

12
422,50
425,00

21
432,50
437,50

16
465,00
475,00


В процессе статистического исследования необходимо решить ряд задач.
Установить наличие статистической связи между факторным признаком Х и результативным признаком Y графическим методом.
Установить наличие корреляционной связи между признаками Х и Y методом аналитической группировки.
Оценить тесноту связи признаков Х и Y на основе эмпирического корреляционного отношения ?.
Построить однофакторную линейную регрессионную модель связи признаков Х и Y, используя инструмент Регрессия надстройки Пакет анализа, и оценить тесноту связи признаков Х и Y на основе линейного коэффициента корреляции r.
Определить адекватность и практическую пригодность построенной линейной регрессионной модели, оценив:
а) значимость и доверительные интервалы коэффициентов а0, а1;
б) индекс детерминации R2 и его значимость;
в) точность регрессионной модели.
Дать экономическую интерпретацию:
а) коэффициента регрессии а1;
б) коэффициента эластичности КЭ;
в) остаточных величин ?i.
Найти наиболее адекватное нелинейное уравнение регрессии с помощью средств инструмента Мастер диаграмм.
2. Выводы по результатам выполнения лабораторной работы
Задача 1. Установление наличия статистической связи между факторным признаком Х и результативным признаком Y графическим методом.
Статистическая связь является разновидностью стохастической (случайной) связи, при которой с изменением факторного признака X закономерным образом изменяется какой–либо из обобщающих статистических показателей распределения результативного признака Y.
Вывод:
Точечный график связи признаков (диаграмма рассеяния, полученная в ЛР-1 после удаления аномальных наблюдений) позволяет сделать вывод, что имеет место статистическая связь. Предположительный вид связи – линейная прямая.
Задача 2. Установление наличия корреляционной связи между признаками Х и Y методом аналитической группировки.
Корреляционная связь – важнейший частный случай стохастической статистической связи, когда под воздействием вариации факторного признака Х закономерно изменяются от группы к группе средние групповые значения результативного признака Y (усредняются результативные значения , полученные под воздействием фактора ). Для выявления наличия корреляционной связи используется метод аналитической группировки.
Вывод:
Результаты выполнения аналитической группировки предприятий по факторному признаку Среднегодовая стоимость основных производственных фондов даны в табл. 2.2 Рабочего файла, которая показывает, что с увеличением значений факторного признака Х закономерно увеличиваются средние групповые значения результативного признака . Следовательно, между признаками Х и Y существует прямая связь.
Задача 3.Оценка тесноты связи признаков Х и Y на основе эмпирического корреляционного отношения.
Для анализа тесноты связи между факторным и результативным признаками рассчитывается показатель ? – эмпирическое корреляционное отношение, задаваемое формулой
,
где и - соответственно межгрупповая и общая дисперсии результативного признака Y - Выпуск продукции (индекс х дисперсии означает, что оценивается мера влияния признака Х на Y).
Для качественной оценки тесноты связи на основе показателя эмпирического корреляционного отношения служит шкала Чэддока:
Значение ?
0,1 – 0,3
0,3 – 0,5
0,5 – 0,7
0,7 – 0,9
0,9 – 0,99

Сила связи
Слабая
Умеренная
Заметная
Тесная
Весьма тесная

Результаты выполненных расчетов представлены в табл. 2.4 Рабочего файла.
Вывод:
Значение коэффициента ? =0,90, что в соответствии с оценочной шкалой Чэддока говорит о весьма тесной степени связи изучаемых признаков.
Задача 4. Построение однофакторной линейной регрессионной модели связи изучаемых признаков с помощью инструмента Регрессия надстройки Пакет анализа и оценка тесноты связи на основе линейного коэффициента корреляции r.
4.1. Построение регрессионной модели заключается в нахождении аналитического выражения связи между факторным признаком X и результативным признаком Y.
Инструмент Регрессия на основе исходных данных (xi , yi), производит расчет параметров а0 и а1 уравнения однофакторной линейной регрессии , а также вычисление ряда показателей, необходимых для проверки адекватности построенного уравнения исходным (фактическим) данным.
Примечание. В результате работы инструмента Регрессия получены четыре результативные таблицы (начиная с заданной ячейки А75). Эти таблицы выводятся в Рабочий файл без нумерации, поэтому необходимо присвоить им номера табл.2.5 – табл.2.8 в соответствии с их порядком.
Вывод:
Рассчитанные в табл.2.7 (ячейки В91 и В92) коэффициенты а0 и а1 позволяют построить линейную регрессионную модель связи изучаемых признаков в виде уравнения -44,297+1,089x
4.2. В случае линейности функции связи для оценки тесноты связи признаков X и Y, устанавливаемой по построенной модели, используется линейный коэффициент корреляции r.
Значение коэффициента корреляции r приводится в табл.2.5 в ячейке В78 (термин "Множественный R").
Вывод:
Значение коэффициента корреляции r =0,91 , что в соответствии с оценочной шкалой Чэддока говорит о весьма тесной степени связи изучаемых признаков.
Задача 5. Анализ адекватности и практической пригодности построенной линейной регрессионной модели.
Анализ адекватности регрессионной модели преследует цель оценить, насколько построенная теоретическая модель взаимосвязи признаков отражает фактическую зависимость между этими признаками, и тем самым оценить практическую пригодность синтезированной модели связи.
Оценка соответствия построенной регрессионной модели исходным (фактическим) значениям признаков X и Y выполняется в 4 этапа:
оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов для заданного уровня надежности;
определение практической пригодности построенной модели на основе оценок линейного коэффициента корреляции r и индекса детерминации R2;
проверка значимости уравнения регрессии в целом по F-критерию Фишера;
оценка погрешности регрессионной модели.
Оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов
Так как коэффициенты уравнения а0 , а1 рассчитывались, исходя из значений признаков только для 30-ти пар (xi , yi), то полученные значения коэффициентов являются лишь приближенными оценками фактических параметров связи а0 , а1. Поэтому необходимо:
проверить значения коэффициентов на неслучайность (т.е. узнать, насколько они типичны для всей генеральной совокупности предприятий отрасли);
определить (с заданной доверительной вероятностью 0,95 и 0,683) пределы, в которых могут находиться значения а0, а1 для генеральной совокупности предприятий.
Для анализа коэффициентов а0, а1 линейного уравнения регрессии используется табл.2.7, в которой:
– значения коэффициентов а0, а1 приведены в ячейках В91 и В92 соответственно;
– рассчитанный уровень значимости коэффициентов уравнения приведен в ячейках Е91 и Е92;
– доверительные интервалы коэффициентов с уровнем надежности Р=0,95 и Р=0,683 указаны в диапазоне ячеек F91:I92.
5.1.1. Определение значимости коэффициентов уравнения
Уровень значимости – это величина ?=1–Р, где Р – заданный уровень надежности (доверительная вероятность).
Режим работы инструмента Регрессия использует по умолчанию уровень надежности Р=0,95.