1. Химические свойства четырех и шести валентного урана. Уран -белый металл плотностью 18,3 г/см, плавящийся при температуре 1133 градуса. Металл достаточно активен - при слабом нагревании он загорается в присутствии воздуха. Он легко соеди- няется с серой и галогенами, вытесняет водород из разбавленных кислот, с образованием солей четырехвалентного урана, а в очень измельченном виде вытесняет водород из воды. Урановый ангидрит имеет характер амфотерного окисла который при растворении в кислотах образует соли, где роль металла играет ион (UO^), а при растворении в щелочах образует кислотные остат- ки в виде комплексных соединений. В химических соединениях уран может находится в четырех валентных состояниях U3+, U4+,U5+,U6+. U3+ в природных условиях не существует и может быть получен только в лаборатории. Соединения пятивалентного урана в основном не устойчивы и легко разлагаются на соединения четырех и шести- валентного урана. 2UCl5= UCl4+UCl6 В водных растворах U5+ находят в виде комплексного иона (UO2)+. В щелочной среде устой чивость иона возрастает. Наиболее устойчивыми ионами в природных условиях являются четырех и шести валентный уран. Ионы четырехвалентного урана ус- тойчивы в востановительной обстановке. Они получаются путем по- тери двух электронов с s подуровня 7-го уровня d-подуровня 6-го уровня и f-подуровня 5-го уровня при этом образуется ионы с внешним восьмиэлектронным уровнем аналогичным с благородными га- зами что характерно для литофильных элементов. Это объясняет их высокую химическую активность по отношению к кислороду и с абую поляризационную способность. Известно что кислотные или щелочные свойства элементов за- висят от отношения валентности к ионному радиусу. Оценку кислот- ных свойств удобно производить по диаграмме Картледжа. Здесь же можно также оценить элементы способные производить изоморфные замещения при условии сходной электронной структуры. Из схемы видно, что в сильнощелочных растворах U4+ может проявлять ангид- ридные свойства, но в нейтральных и слабокислых активно реагирует с ионами гидроксила, а гидроксил четырехвалентного урана плохо растворяется в воде. Для U(OH)4 растворимость составляет 5,2*10-12 моль/л, что в 1000 раз ниже растворимости гидроксида алюминия. В отличии от четырехвалентного урана шестивалентный уран принимает более активное участие в геологических процессах. Для UО2(OH)2 растворимость составляет 3.5*10-9 моль/л. Константа диссоциации равна 2*10-22. В неитральной среде кон- центрация ионов уранила равна 10-8 моль/л и только в кислых растворах рН=4 она повышается до 10-2 моль/л. Учитывая, что в растворе могут присутствовать, как продукты гидролиза, ионы UO2(OH)+, общая концентрация ионов урана в нейтральной среде не опускается ниже 10-6 моль/л. Катион UO2+2 представляет собой линейное образование в центре которого находится U4+, а атомы кислорода расположены на одинаковых растояниях. По данным ионных радиусов было установле- но, что связь атома урана с атомами кислорода носит ковалентный характер. При ковалентной связи атомы имеют общие элкектроны, которые объясняют высокую прочность соединения. Низкую прочность соединений шестивалентного урана объясняется тем что весь заряд сосредоточен вокруг урана, а не вокруг кислорда. Ионный радиус этого катиона примерно равен 3 А, такой радиус значительно зат- рудняет изоморфное вхождение в кристаллическую структуру. Следо- вательно самостоятельные минералы шестивалентного урана могут образовываться в основном с крупными анионами. Большие размеры катиона U+6 объясняют его накопление в мелкозернистых породах. 2. Распространенность урана в земной коре. Несмотря на высокий атомный номер и возможность распада ядер, содержание урана в земной коре относительно высокое. В земной коре содержится около 2.5*10-4% урана. В коре содержание урана достигает 4*10-4%, в мантии 1.2*10-6% и ядре 3*10-7%. 2.1 Магматические горные породы. Кларк урана сильно меняется в зависимости от состава магма- тических горных пород. Наибольшее значение КК=14 в щелочных и ультращелочных горных породах. Кларк урана прямопропорционально зависит от агпаитности горных пород. Так самые высокие содержа- ния отмечаются в агпаитовых нефелиновых сиенитах Ловозерского массива. Причем уран больше концентрируется в акцессорных мине- ралах инрузивных пород. При щелочно-кремнистом метасоматозе гра- нитных интрузий часто происходит диффузионное перераспределение урана с извлечением его из кристаллической решетки акцессорных минералов. В эффузивных породах до 90% урана находится в стекло- видной массе. На сегодняшний день магматические рудопроявления промышлен- ного значения не имеют. 2.2 Метаморфические горные породы. В метаморфических породах содержание урана обычно ниже кларка. Наиболее высокими содержаниями урана характеризуются уг- леродисто-кремнистые сланцы и богатые калием различные гнейсы. При метаморфизме полевошпат-кварцевых пород происходит миг- рация урана от центра к периферии толщи. Существенное изменение содержания урана вызывают процессы ультраметаморфизма и гранитизации. Особенно значительное обога- щение ураном происходит при щелочно-кремнистом метасоматозе. 2.3 Осадочные породы. Накопление урана в осадочных породах безусловно происходит очень не равномерно, из-за чего выделяют ряд геохимических комп- лексов. Для грубых терригенных осадков кларки концентрации близки к единице. В мелкозернистых породах кларки урана значительно повы- шаются. Сильно влияет на содержание урана в осадочных породах органическое вещество, однако четкой связи не наблюдается. Низ- кое содержание урана характерно для известняков и мергелей, иск- лючение составляют битуминозные разновидности этих пород. Самые низкие содержания урана отмечены в ангидритах и каменных солях. Изучение геохимии живого вещества показывает, что организмы не концентрируют уран. Однако отжившие свой срок организмы на различных стадиях диагенеза способны накапливать радиоактивный элемент до промышленных концентраций. Что они и делают при нали- чии вод с окислительной обстановкой, которая способствует мигра- ции урана. В данных породах накопление урана связано с наложен- ными процессами. Вместе с тем распространены предположительно первично ура- ноносные углеродисто-кремнистые и углеродо-глинистые сланцы. Максимальные содержания урана достигают 0.03%. Обогащенные прос- лои сложены углеродистыми сланцами обогащенные пиритом и фосфо- ритами. В не метаморфизованых углистых сланцах первичных урано- вых минералов не обнаружено. В качестве обогащаемых ураном выде- ляют фосфориты, в которых содержание урана возрастает с повыше- нием содержания фосфора. Фосфаты часто представлены франколитом (Са5(PO4,CO3)3F. Предположительно четырехвалентный уран изоморф- но замещает в нем кальций. Однако имеются экспериментальные дан- ные говорящее о значительной сорбции, видимо уранила, фосфатным веществом. 3. Изоморфизм. Изоморфизм -процесс при котором один ион замещает другой. Это возможно когда: 1 колебание ионных радиусов не превышает более 15% при нормальных температурах. 2 Поляризация этих ионов должна быть одинаковой. В изоморфизме с ураном уличены Th4+, Ce4+, Zr4+, Hf4+,TR3+,Y3+, Sc3+, Ca2+. Причем UO2-ThO2-Ceo2 способны замещать друг друга в неограниченных колличествах. В изоморфизме по видемому может участвовать только четырехвалентный уран, так как у ионов шестивалентного урана слишком большой ионный радиус, а из-за высокой активности металлического урана в природе не об- наружено. Уран в различных геологических процессах. Не смотря на сравнительно высокое содержание урана в магма- тических горных породах он практически не образует промышленных концентраций. Как уже отмечалось повышенные концентрации этого элемента отмечены в щелочных породах. В Ловозерском массиве ус- тановлена следующая примерная схема кристаллизации магмы: поле- вые шпаты, нефелин, эгирин, лампрофиллит, эвдиалит, ферсманит, лопарит. По приведенной последовательности можно предположить, что в щелочных расплавах первыми кристаллизуются минералы содер- жащие ионы с меньшими валентностями. Причем чем выше концентра- ция щелочей относительно концентрации высоковалентных катионов, тем сильнее влияние этих щелочей на роль высоковалентных кватио- нов в минералообразовании. Так появление титанн-цирконий-нио- бий-силикатов определяет начало вовлечение урана в магматическое минералообразование. На этом этапе повышаются содержания урана в породообразующих минералах. При повышеной щелочности относитель- но концентрации Al3+,Fe3+,Ti4+, циркон и торит оразоватся не мо- гут, в результате проявляются ангидридные свойства циркония и кристаллизуется эвдиалит (Na,Ca)6Zr[Si6O18](Cl,OH), это также справедливо и для урана. По силе основности был составлен ряд определяющий вовлечение указаных элементов в состав породообра- зующих минералов. На основе изученных данных уран уличен в корреляционной связи с относительным содержанием щелочей . Эта корреляция не имеет прямой зависимости ,а подчиняется пропорциональной связи со степенью агпаитности пород, отражающей соотношения в магмати- ческ