СИММЕТРИЯ И АСИММЕТРИЯ
Содержание:
Симметрия
Введение
Человек, как пример симметричного существа
Подобие
Определение симметрии
Зеркальная симметрия
Зеркальное отражение
От трельяжа до радара
Легенды рудокопов
Асимметрия
Асимметрия внутри симметрии
Асимметрия в природе
Заключение
Список используемой литературы
Симметрия
Введение
Понятие симметрии играет ведущую, хотя и не всегда осознанную, роль в современной науке, искусстве, технике и окружающей нас жизни. Она пронизывает буквально все вокруг, захватывая, казалось бы, совершенно неожиданные области и объекты. Дж. Ньюмена особенно удачно подчеркнул всеохватывающие и вездесущие проявления симметрии: «Симметрия устанавливает забавное и удивительное сродство между предметами, явлениями и теориями, внешне, казалось бы, ничем не связанными: земным магнетизмом, женской вуалью, поляризованным светом, естественным отбором, теорией групп, инвариантами и преобразованиями, рабочими привычками пчел в улье, строением пространства, рисунками ваз, квантовой физикой, скарабеями, лепестками цветов, интерференционной картиной рентгеновских лучей, делением клеток морских ежей, равновесными конфигурациями кристаллов, романскими соборами, снежинками, музыкой, теорией относительности...»
Особое внимание следует заострить на зеркальной симметрии. Такой подход вполне правомерен. Достаточно взглянуть на окружающий нас реальный мир, чтобы убедиться в первостепенном значении именно зеркальной симметрии с соответствующим симметричным элементом — плоскостью симметрии. В самом деле, форма всех объектов, которые двигаются по земной поверхности или возле нее — шагают, плывут, летят, катятся, — обладает, как правило, одной более или менее хорошо выраженной плоскостью симметрии. Все то, что развивается или движется лишь в вертикальном направлении, характеризуется симметрией конуса, то есть имеет множество плоскостей симметрии, пересекающихся вдоль вертикальной оси. И то и другое объясняется действием силы земного тяготения, симметрия которого моделируется конусом
Главную роль в теории играет плоскость симметрии. Знаменитый русский кристаллограф Г. В. Вульф (1863—1925) писал (1896) о плоскости симметрии как об «основном элементе симметрии». Комбинируя зеркальные отражения, можно вывести все возможные симметричные операции. Исходя из этих комбинаций, можно полностью вывести все элементы классической симметрии — простые, сложные и винтовые оси, плоскости простого и скользящего отражения, трансляции. Совокупности таких элементов образуют виды симметрии (например, 32 класса для кристаллических многогранников, 230 пространственных групп для кристаллических структур). Как видим, именно плоскость симметрии лежит в основании всего здания симметричной теории
Человек как пример симметричного существа
Абсолютно симметричного человека, скорее всего, не существует. У каждого, разумеется, обнаружится родинка, прядь волос или какая-нибудь другая деталь, нарушающая внешнюю симметрию. Левый глаз никогда не бывает в точности таким, как правый, да и уголки рта находятся на разной высоте, во всяком случае, у большинства людей
Но это лишь мелкие несоответствия. Никто не усомнится, что внешне человек построен симметрично: левой руке всегда соответствует правая и обе руки совершенно одинаковы
Но, если бы наши руки и в самом деле были совершенно одинаковы, мы могли бы в любой момент поменять их. Было бы возможно, скажем, путем трансплантации пересадить левую ладонь на правую руку, или, проще, левая перчатка подходила бы тогда к правой руке, но на самом деле это не так
Всем известно, что сходство между нашими руками, ушами, глазами и другими частями тела такое же, как между предметом и его отражением в зеркале. Именно вопросам симметрии и зеркального отражения здесь и уделяется внимание
Многие художники обращали пристальное внимание на симметрию и пропорции человеческого тела, во всяком случае, до тех пор, пока ими руководило желание в своих произведениях как можно точнее следовать природе. Известны каноны пропорций, составленные Альбрехтом Дюрером и Леонардо да Винчи. Согласно этим канонам, человеческое тело не только симметрично, но и пропорционально. Леонардо открыл, что тело вписывается в круг и в квадрат. Дюрер занимался поисками единой меры, которая находилась бы в определенном соотношении с длиной туловища или ноги (такой мерой он считал длину руки до локтя)
В современных школах живописи в качестве единой меры чаще всего принимается размер головы по вертикали. С известным допущением можно считать, что длина туловища превосходит размер головы в восемь раз. На первый взгляд это кажется странным. Но нельзя забывать, что большинство высоких людей отличаются удлиненным черепом и, наоборот, редко можно встретить низкорослого толстяка с головой удлиненной формы
Размеру головы пропорциональна не только длина туловища, но и размеры других частей тела. По этому принципу построены все люди, оттого-то мы в общем похожи друг на друга. Однако наши пропорции согласуются лишь приблизительно, а потому люди лишь похожи, но не одинаковы. Во всяком случае, все мы симметричны! К тому же некоторые художники в своих произведениях особенно подчеркивают эту симметрию
И в одежде человек тоже, как правило, старается поддерживать впечатление симметричности: правый рукав соответствует левому, правая штанина — левой
Пуговицы на куртке и на рубашке сидят ровно посередине, а если и отступают от нее, то на симметричные расстояния
Но на фоне этой общей симметрии в мелких деталях мы умышленно допускаем асимметрию, например, расчесывая волосы на косой пробор — слева или справа. Или, скажем, помещая на костюме асимметричный кармашек на груди. Или надев кольцо на безымянный палец только одной руки. Лишь на одной стороне груди носятся ордена и значки (чаще на левой)
Полная безукоризненная симметрия выглядела бы нестерпимо скучно. Именно небольшие отклонения от нее и придают характерные, индивидуальные черты
И вместе с тем порой человек старается подчеркнуть, усилить различие между левым и правым. В средние века мужчины одно время щеголяли в панталонах со штанинами разных цветов (например, одной красной, а другой черной или белой). В не столь отдалённые дни были популярны джинсы с яркими заплатами или цвет ными разводами. Но подобная мода всегда недолговечна. Лишь тактичные, скромные отклонения от симметрии остаются на долгие времена
Подобие
Нередко мы говорим, что какие-то два человека похожи друг на друга. Дети обычно похожи на своих родителей (во всяком случае, по мнению их бабушек). Похожи, но не одинаковы!
Попробуем разобраться, что понимается под сходством или подобием в математике. У подобных фигур соответствующие отрезки пропорциональны друг другу. В нашем случае мы можем сформулировать это положение так: подобные носы имеют одинаковую форму, но могут отличаться размером. При этом каждому отдельному участку носа (например, переносице) должны быть пропорциональны все остальные
Этот закон подобия иногда таит в себе подвох. Например, в задаче такого рода:
Высота башни А 10 м . На некотором расстоянии Х от нее находится шестиметровая башня В. Если провести прямые от подножия и от вершины башни А через вершину башни В, то они встретятся соответственно с подножием и вершиной башни С, имеющей высоту 15 м . Каково расстояние от башни А до башни Д?
Казалось бы, для решения достаточно взять в руки циркуль и линейку. Но тут же выяснится, что ответов будет бесконечное множество. Иными словами, на вопрос о значении Х не может быть однозначного ответа
Такого рода задачи, даже если они и не имеют решения, как, например, предложенная выше, касаются какой-либо проблемы, лежащей у пределов нашего знания. Большей частью это те самые пределы, перед котор ы ми пасует знаменитый «здравый смысл», и лишь строго математическое логическое мышление вкупе с естественнонаучным познанием способно привести к правильному решению
Обратимся снова к человеку: при сравнении живых существ сходство ощущается явно, если совпадают их пропорции. Поэтому могут быть похожи дети и взрослые. Хотя масса и размеры любой из частей тела, будь то нос или рот, различны, но пропорции похожих индивидов совпадают
Поразительный пример подобия — глазомерная оценка ра с стояния с помощью большого пальца. Таким способом военные и моряки прикидывают расстояние между двумя пунктами на мест ности или в море, сопоставляя их с шириной пальца или кулака. В самом простом случае закрывают один глаз и смотрят открытым глазом на палец вытянутой руки, используя его как визир
Если раскрыть прежде закрытый глаз (а второй зажмурить), палец на видимое расстояние переместится в сторону. В градусном выражении это расстояние составляет 6°. И притом величина этого «прыжка» (в пределах допустимой ошибки) одинакова у всех людей! Так, правофланговый роты, парень двухметрового роста, и самый маленький — левофланговый, ростом всего лишь метр шестьдесят, сравнив эти «прыжки» пальца, получат одну и ту же величину
Причина этого явления, в конечном счете, кроется в