Содержание ВВЕДЕНИЕ 1. ВЫБОР СЕРИИ И ТИПОВ МИКРОСХЕМ И РАСПРЕДЕЛЕНИЕ ЭЛЕМЕНТОВ ФУНКЦИОНАЛЬНОЙ СХЕМЫ ПО КОРПУСАМ 1.1. Выбор физических элементов для реализации схемы и обзор параметров выбранной серии 1.2. Распределение элементов функциональной схемы по корпусам 2. РАЗМЕЩЕНИЕ ЭРЭ НА МОНТАЖНОМ ПРОСТРАНСТВЕ 3. ТРАССИРОВКА МОНТАЖНЫХ СОЕДИНЕНИЙ 3.1 Трассировка с помощью алгоритма Прима 3.2 Трассировка по алгоритму Краскала 3.3 Трассировка классическим волновым алгоритмом Ли ЗАКЛЮЧЕНИЕ ЛИТЕРАТУРА
ВВЕДЕНИЕ Основные принципы изготовления и применения печатных схем стали известны в начале ХХ века, однако промышленный выпуск печатных схем и плат был организован лишь в начале 40-х годов С переходом на микроэлектронные элементы, резким уменьшением размеров и возрастанием быстродействия схем первое место занимают вопросы обеспечения постоянства характеристик печатных проводников и взаимного их расположения. Значительно усложнились задачи проектирования и оптимального конструирования печатных плат и элементов Печатные платы нашли широкое применение в электронике, позволяя увеличить надёжность элементов, узлов и машин в целом, технологичность (за счёт автоматизации некоторых процессов сборки и монтажа), плотность размещения элементов (за счёт уменьшения габаритных размеров и массы), быстродействие, помехозащищённость элементов и схем. Печатный монтаж – основа решения проблемы компановки микроэлектронных элементов. Особую роль печатные платы играют в цифровой микроэлектронике. В наиболее развитой форме (многослойный печатный монтаж) он удовлетворяет требования конструирования вычеслительных машин третьего и последующих поколений При разработке конструкции печатных плат проектеровщику приходится решать схемотехнические (минимизация кол-ва слоёв, трассировка), радиотехнические (расчёт паразитных наводок), теплотехнические (температурный режим работы платы и элементов), конструктивные (размещения), технологические (выбор метода изготовления) задачи В данном курсовом проекте при разработке печатной платы мы попытались показать методы решения лишь схемотехнических и технологических задач 1. ВЫБОР СЕРИИ И ТИПОВ МИКРОСХЕМ И РАСПРЕДЕЛЕНИЕ ЭЛЕМЕНТОВ ФУНКЦИОНАЛЬНОЙ СХЕМЫ ПО КОРПУСАМ 1.1. Выбор физических элементов для реализации схемы и обзор параметров выбранной серии Выбор серии интегральных микросхем для реализации блока оперативной памяти в первую очередь продиктован скоростью работы такого блока. В этом отношении микросхемы серии ТТЛШ (транзисторно–транзисторная логика со структурой Шотки) наиболее предпочтительны Электрическая функциональная схема блока оперативной памяти содержит сорок пять элементов 2И-НЕ, три элемента 3И-НЕ Для реализации блока оперативной памяти выбираем следующие типы микросхемы: две микросхемы серии КР1531ЛА3 (корпус содержит 4 элемента 2И-НЕ); две микросхемы серии КР1531ЛА4 (корпус содержит 3 элемента 3И-НЕ); Основные параметры микросхем ТТЛШ серии КР1531: — напряжение питания Uип = 5В ± 10%; — выходное напряжение низкого уровня не более U0вых = 0,5В; — выходное напряжение высокого уровня не менее U1вых = 2,5В; — время задержки распространения tзд.р. = 4,5нс; — потребляемая мощность Pпот = 4мВт; — сопротивление нагрузки Rн = 0,28кОм;
1.2. Распределение элементов функциональной схемы по корпусам Распределение четырёх элементов 2И-НЕ составляющих триггер очевидно: Поскольку внутренних связей в таком элементе гораздо больше чем внешних, то очевидно их помещение в одну микросхему КР1531ЛА3 Для распределения девяти оставшихся элементов 2И-НЕ по трём корпусам микросхем КР1531ЛА3 вычерчиваем часть электрической функциональной схемы блока оперативной памяти, содержащую эти элементы, и строим соответствующий ей граф G1 (рис.1.1) Рис. 1.1 а) Выбираем базовую вершину – вершину имеющую максимальное количество связей. Поскольку в нашем случае все вершины имеют одинаковое количество связей, выбираем любую из них, например вершину Х1 б) Определяем множество вершин подключённых к базовой: {4;7} Для каждой из вершин рассчитываем функционал по формуле: Li=aij-pij где aij – число связей вершины; pij – число связей с базовой вершиной; В нашем случае функционал равен: L7=L4=2-1=1; Для объединения с базовой вершиной необходимо выбрать вершину с наименьшим функционалом. Поскольку в нашем случае вершины Х7 и Х4 равнозначны, то объединяем их с Х1. Поскольку мощность блока (4 элемента 2И-НЕ в одной микросхеме) ещё не достигнута, а все оставшиеся вершины идентичны по отношению к вершине Х(1+4+7), дополним блок вершиной Х2, объединив их в одну микросхему. Получим граф:
Теперь, в качестве базовой изберём вершину Х3. Рассуждая так же как и в предыдущем шаге объединим в одну микросхему вершины Х3, Х6, Х9 и Х5. Вершину Х8 придётся поместить в отдельную микросхему Проанализировав полученные результаты можно увидеть, что для компоновки элементов Х1-Х9 необходимо 3 микросхемы КР1531ЛА3, причём в последней из них будет задействован лишь один элемент. В нашем случае рациональней будет уменьшить мощность блока до трёх. В этом случае количество необходимых микросхем не изменится, а элементы распределятся следующим образом: Х(1+4+7), Х(2+5+8), Х(3+6+9). Окончательно примем к проектированию именно такой вариант компоновки Три элемента 3И-НЕ поместим в одну микросхему КР1531ЛА3 поскольку в этом случае мощность блока (кол-во элементов в микросхеме) равна количеству элементов в функциональной схеме На основании полученных результатов строим электрическую принципиальную схему блока оперативной памяти (см. графическую часть) 2. РАЗМЕЩЕНИЕ ЭРЭ НА МОНТАЖНОМ ПРОСТРАНСТВЕ В соответствии с заданием монтажное пространство — печатная плата 95х130 мм. Для размещения микросхем DD1—DD13 и разъема Х1 разобьем монтажное пространство на 14 посадочных мест, из которых место К14 отведем под разъем (рис.2.1)
Приведём полный граф электрической принципиальной схемы (рис. 2.2). Элементы 1…12 – микросхемы КР1531ЛА3, элемент 13 – микросхема КР1531ЛА4, а элемент 14 – разъём рис. 2.2
Матрица смежности этого графа имеет вид: К1 К2 К3 К4 К5 К6 К7 К8 К9 К10 К11 К12 К13 К14
К1 1 1 1 1 0 0 1 0 0 1 0 0 0 2
К2 1 1 1 0 1 0 0 1 0 0 1 0 0 2
К3 1 1 1 0 0 1 0 0 1 0 0 1 0 2
К4 1 0 0 1 1 1 1 0 0 1 0 0 0 2
К5 0 1 0 1 1 1 0 1 0 0 1 0 0 2
К6 0 0 1 1 1 1 0 0 1 0 0 1 0 2
К7 1 0 0 1 0 0 1 1 1 1 0 0 0 2
К8 0 1 0 0 1 0 1 1 1 0 1 0 0 2
К9 0 0 1 0 0 1 1 1 1 0 0 1 0 2
К10 1 0 0 1 0 0 1 0 0 1 0 0 3 0
К11 0 1 0 0 1 0 0 1 0 0 1 0 3 0
К12 0 0 1 0 0 1 0 0 1 0 0 1 3 0
К13 0 0 0 0 0 0 0 0 0 3 3 3 1 3
К14 2 2 2 2 2 2 2 2 2 0 0 0 3 1
Для размещения корпусов микросхем на печатной плате воспользуемся последовательным алгоритмом размещения: 1) Устанавливаем в какую-либо позицию любой из элементов 2) Выбираем элемент для установки на текущем шаге. Для этого определяем коэффициент связности всех не установленных элементов с ранее установленными (по матрице смежности): (2.1) где aij – число связей с ранее установленными элементами; Vi – общее число связей элемента; 2) Выбираем элемент с максимальным коэффициентом связности Ф 3) Пытаемся установить выбранный элемент в одну из незанятых позиций. Считаем для этой позиции D F по формуле: (2.2) где aij – количество связей между i-м и j-м элементами; rij – расстояние между элементами, берётся из матрицы расстояний; fij – элемент матрицы весовых коэффициентов; 4) Повторяем пункт 3 для всех свободных позиций на печатной плате. Окончательно устанавливаем выбранный элемент в позицию с минимальным D F 5) Повторяем пункты 2 - 4 пока не установим все элементы Произведём размещение элементов по вышеописанному алгоритму В нашем случае, поскольку все элементы равноправны, матрица весовых коэффициентов в формуле 2.2 будет единичной, поэтому этот параметр мы указывать не будем. В первую очередь установим разъём в позицию К14, т.к. его положение жёстко определено конструкторскими огра