Прогнозирование на основе аппарата нейронных сетей
 
ПРОГНОЗИРОВАНИЕ НА ОСНОВЕ АППАРАТА НЕЙРОННЫХ СЕТЕЙ
АННОТАЦИЯ
В данной дипломной работе разработан оригинальнй подход к проблеме прогнозирования, на основе нейронных сетей. При помощи нейронной сети основанной на алгоритме обратного функционирования, были спрогнозированы изменения курса доллара США по отношению к украинскому карбованцу. Эксперимент дал хорошие результаты по достоверности. Разработанна модель прогнозирования может быть применена и при прогнозировании других экономических показателей.
ANNOTATION In this diploma work the original approach to forecasting problem is developed. This approach based of neural nets modeling. By the book propogation neural net, relative change rate for USD/UKB was predicted. The elaboration was successful and profitable. The model developed for problem discussed may be successfuly used of a number of management solution forecasting.
СПИСОК СОКРАЩЕНИЙ ВТ - вычислительная техника; ИИ - искусственный интеллект; ЦУ - цифровое устройство; ЭС - экспертная система; НС - нейронная сеть; ИК - изменение курса; ОИК - относительное изменение курса; ОИК в % - относительное изменение курса в процентах; DM - немецкая марка; SUR - российский рубль; USD - американский доллар; UKB - украинский карбованец.
ПЕРЕЧЕНЬ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
1. Модель нейрона и виды переходной функции.
2. Модели нейронных сетей.
3. Схема обучения НС с обратным функционированием.
4. Относительное изменение курса за 1995г.
5. Курс доллара и его прогноз за 1995г.
6. График взаимосвязи спроса и предложения доллара.
 
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
ПРОГНОЗИРУЮЩИЕ СИСТЕМЫ. СОСТОЯНИЕ ПРОБЛЕМЫ
1.1. Прогноз и цели его использования
1.2. Основные понятия и определения проблемы прогнозирования
1.3. Методы прогнозирования
1.4. Модели временных последовательностей
1.5. Критерии производительности
ВЫВОДЫ
2. НЕЙРОННЫЕ СЕТИ. СОСТОЯНИЕ ПРОБЛЕМЫ
2.1. Нейронные сети - основные понятия и определения
2.2. Модели нейронных сетей
2.2.1. Модель Маккалоха
2.2.2. Модель Розенблата
2.2.3. Модель Хопфилда
2.2.4. Модель сети с обратным распространением
2.3. Задачи, решаемые на основе нейронных сетей
2.4. Способы реализации нейронных сетей
ВЫВОДЫ
3. ПРОГНОЗИРОВАНИЕ НА ОСНОВЕ НЕЙРОННЫХ СЕТЕЙ
3.1. Общий подход к прогнозированию с помощью нейронных сетей
3.2. Применение нейронных сетей в финансовой сфере
ВЫВОДЫ
4. НЕЙРОННЫЕ СЕТИ, ОСНОВАННЫЕ НА МЕТОДЕ ОБРАТНОГО ФУНКЦИОНИРОВАНИЯ
4.1. Обучение нейронных сетей
4.2. Алгоритм обратного распространения
4.2.1. Идея создания алгоритма обратного распространения
4.2.2. Описание НС и алгоритма обратного распространения
4.2.3. Современная оценка алгоритма обратного распространения
ВЫВОДЫ
5. ПРОГНОЗИРОВАНИЕ КУРСА UKB/USD
5.1. Общий подход к прогнозированию курса UKB/USD
5.2. Описание экспериментов
ВЫВОДЫ
ЗАКЛЮЧЕНИЕ
ЛИТЕРАТУРА
ПРИЛОЖЕНИЯ
ПРИЛОЖЕНИЕ 1. Еженедельные продажи режущего инструмента
ПРИЛОЖЕНИЕ 2.1 Результаты экспериментов 14-18
ПРИЛОЖЕНИЕ 2.2 Результаты экспериментов 19-21,34,35
ПРИЛОЖЕНИЕ 2.3 Результаты экспериментов 36-38
ПРИЛОЖЕНИЕ 3. Результаты прогноза UKB/USD
 
ВВЕДЕНИЕ
Целью данной работы является разработка методов прогнозирования основанных на нейронных сетях (НС) , которые может быть использованы в прогнозирующих системах. На основе этих методов возможно предсказание значения переменных, важных в процессе принятия решений. Эти методы анализируют исторические данные о переменной с целью оценить ее будущее изменение.
Для достижения указанной цели необходимо решить следующие задачи: провести анализ проблемы прогнозирования; провести сравнительный анализ известных моделей НС; выбрать модель, обеспечивающую эффективное решение задачи прогнозирования; провести исследование предложенной модели; реализовать тестовый пример для выбранной модели.
Основное содержание работы: Во введении сформулирована цель и основные задачи исследования, изложены основные положения разделов работы.
В первой главе мы обсуждаем некоторые общие аспекты разработки прогнозирующих систем: понятие прогноза и цели его использования, основные понятия и определения в области прогнозирования, методы прогнозирования, модели временных последовательностей, критерии производительности прогнозирующих систем и другие общие вопросы, касающиеся разработки прогнозирующих систем.
Во второй главе мы обсуждаем известные модели НС: модель Маккалоха и Питтса; модель Розенблата; модели Хопфилда и Больцмана; модель на основе обратного распространения. Рассмотрена структура и особенности каждой из моделей. Перечислены основные задачи решаемые на основе НС, описаны способы реализации НС. Проведен анализ известных моделей НС с точки зрения решения задачи прогнозирования.
В третьей главе описан способ прогнозирования с помощью НС, основанный на методе окон. Также приведен обзор применения НС в финансовой сфере.
В четвертой главе мы приводим детальное описание метода обратного распространения - способа обучения многослойных НС. Подробно описана НС для распознавания рукописных цифр и процесс ее обучения. В главе также проведена современная оценка метода обратного распространения.
В пятой главе описаны эксперименты по прогнозированию курса американского доллара по отношению к украинскому карбованцу (UKB/USD) . Сначала описаны задачи исследования и общая структура экспериментов. Далее описаны проделанные эксперименты, при этом подробно перечислены особенности каждого из них. Для экспериментов, которые показали удовлетворительные результаты обучения (сеть распознала не менее 80% образов, на которых обучалась) в приложениях приведены таблицы с подробным описанием результатов по каждому образу, который распознавался.
Завершается работа заключением, в котором сделаны основные теоретические и практические выводы, указана перспектива дальнейших исследований, а также приведены список использованной литературы и приложения.
- ЗАКЛЮЧЕНИЕ В данной работе разработан ряд методов прогнозирования основанных на нейронных сетях (НС) , которые могут быть использованы в прогнозирующих системах. На основе этих методов возможно предсказание значения переменных, важных в процессе принятия решений.
В работе обсуждены аспекты разработки прогнозирующих систем: понятие прогноза и цели его использования, основные понятия и определения в области прогнозирования, методы прогнозирования, модели временных последовательностей, критерии производительности прогнозирующих систем и другие общие вопросы касающиеся разработки прогнозирующих систем, На основании анализа известных моделей НС: модели Маккалоха и Питтса; модели Розенблата; модели Хопфилда и Больцмана; модели на основе обратного распространения, для реализации прогнозирующей системы было предложено применение модели на основе обратного распространения. Предложен способ прогнозирования с помощью НС, основанный на методе окон. Также приведен обзор применения НС в финансовой сфере, показывающий эффективность применения НС для прогнозирования.
Разработан тестовый пример для предложенного метода на основании прогнозирования курса USD/UKB. Проведенные в данной предметной области эксперименты показали высокую точность прогнозирования. На основании проделанных экспериментов возможно построение программного продукта для прогнозирования курсов валют даже в условиях нестабильного состояния современной украинской экономики.
В целом мы считаем результаты работы тем базисом, на основании которого возможно построение универсального прогнозирующего комплекса, являющегося составной частью общей системы управления.
1. ПРОГНОЗИРУЮЩИЕ СИСТЕМЫ. СОСТОЯНИЕ ПРОБЛЕМЫ В данной главе мы обсуждаем некоторые общие аспекты разработки прогнозирующих систем: понятие прогноза и цели его использования, основные понятия и определения в области прогнозирования, методы прогнозирования, модели временных последовательностей, критерии производительности прогнозирующих систем и другие общие вопросы, касающиеся разработки прогнозирующих систем.
Прогноз и цели его использования
Прогнозирование - это ключевой момент при принятии решений в управлении. Конечная эффективность любого решения зависит от последовательности событий, возникающих уже после принятия решения. Возможность предсказать неуправляемые аспекты этих событий перед принятием решения позволяет сделать наилучший выбор, который, в противном случае, мог бы быть не таким удачным. Поэтому системы планирования и управления, обычно, реализуют функцию прогноза. Далее перечислены примеры ситуаций [44], в которых полезно прогнозирование.
Управление материально-производственными запасами. В управлении запасами запасных частей на предприятии по ремонту самолетов совершенно необходимо оценить степень используемости каждой детали. На основе этой информации определяется необходимое количество запасных частей. Кроме того, необходимо оценить ошибку прогнозирования. Эта ошибка может быть оценена, например, на основе данных о времени, которое понадобилось для доставки деталей, которых не было на складе.
Планирование производства. Для