I Введение.
II Предмет физики.
1. Основные открытия в физике на рубеже XIX-XX столетий.
2. Основные философские вопросы современной физики:
а) неисчерпаемость и бесконечность материи;
б) движение: абсолютность и относительность;
в) вопрос об объективной реальности в квантовой физике;
г) проблема причинности;
д) философские размышления о пространстве и времени с
точки зрения относительности; о непрерывном и
дискретном пространстве и времени.
3. Неразрешенные вопросы физики.
III Заключение.
Введение.
Наши дни - время преобразований, время выдающихся достижений
науки и техники. Особенности развития современной науки влияют на
структуру и характер научного познания. Именно они составляют ис-
торически определенные границы, обусловливающие специфику позна-
вательного процесса. Более того, научные знания о природе имеют
существенное значение и для философского осмысления окружающего
мира. То обстоятельство, что физика по сравнению с другими ес-
тественными науками ( например, химией или биологией ) занимается
относительно более общими явлениями окружающего материального ми-
ра, в известной степени определяет ее более непосредственную, не-
жели у других естественных наук, связь с философией.
Физику всегда приходится решать разнообразные онтологические
и гносеологические вопросы, и поэтому он вынужден обращаться к
философии. М. Борн писал: "... Физика на каждом шагу встречается
с логическими и гносеологическими трудностями ... каждая фаза ес-
тественнонаучного познания находится в тесном взаимодействии с
философской системой своего времени: естествознание доставляет
факты наблюдения, а философия - методы мышления."
Физики при разработке современных теорий критически переос-
мысливают накопленные в прошлом знания. Новое знание как бы отри-
цает предшествовавшие, но отрицает диалектически, сохраняя момент
абсолютной истины. Философские идеи, как об этом убедительно сви-
детельствует история, играют чрезвычайно важную роль в процессе
становления физических теорий; без преувеличения можно сказать,
что без философского обоснования физическая теория не может сфор-
мироваться.
Основные открытия в физике на рубеже XIX-XX столетий.
Физика - комплекс научных дисциплин, изучающих общие свойс-
тва структуры взаимодействия и движения материи.
Физику ( в соответствии с этими задачами ) весьма условно
можно подразделить на 3 большие области: структурную физику, фи-
зику взаимодействий и физику движения.
Науки, образующие структурную физику, довольно четко разли-
чаются по изучаемым объектам, которыми могут быть как элементы
структуры вещества ( элементарные частицы, атомы, молекулы ), так
и более сложные образования ( плазма, кристаллы, звезды и т. д. ).
Физика взаимодействий, основанная на представлении о поле,
как материальном носителе взаимодействия, делится на 4 отдела (
сильное, электромагнитное, слабое, гравитационное ).
Физика движения ( механика ) включает в себя классическую
( Ньютоновскую ) механику, релятивистскую ( Энштейновскую ) меха-
нику, нерелятивистскую квантовую механику и релятивистскую кван-
товую механику.
Уже в глубокой древности возникли зачатки знаний, впоследс-
твии вошедшие в состав физики и связанные с простейшими представ-
лениями о длине, тяжести, движении, равновесии и т. д. В недрах
греческой натурфилософии сформулировались зародыши всех трех час-
тей физики, однако на первом плане стояла физика движения, пони-
маемая,как изменение вообще. Взаимодействие отдельных вещей трак-
товалось наивно-антропоцентрически ( например, мнение об одушев-
ленности магнита у Фалеса ). Подобное рассмотрение проблем, свя-
занных с анализом движения как перемещения в пространстве, впер-
вые было осуществлено в знаменитых апориях Зенона Элейского. В
связи с обсуждением структуры первоначал зарождаются и конкуриру-
ют концепции непрерывной делимости до бесконечности ( Анаксагор )
и дискретности существования неделимых элементов ( атомисты ). В
этих концепциях закладывается понятийный базис будущей структур-
ной физики.
В связи с задачами анализа простейшей формы движения ( изме-
нения по месту ) возникают попытки уточнения понятий "движение",
"покой", "место", "время". Результаты, полученные на этом пути,
образуют основу понятийного аппарата будущей физики движения -
механики. При сохранении антропоморфных тенденций у атомистов
четко намечается понимание взаимодействия как непосредственного
столкновения основных первоначал - атомов. Полученные умозритель-
ным путем достижения греческой натурфилософии вплоть до XVI в.
служили единственными средствами построения картины мира в науке.
Превращение физики в самостоятельную науку обычно связывает-
ся с именем Галилея. Основной задачей физики он считал эмпиричес-
кое установление количественных связей между характеристиками яв-
лений и выражение этих связей в математической форме с целью
дальнейшего исследования их математическими средствами, в роли
которых выступали геометрические чертежи и арифметическое учение
о пропорциях. Использование этих средств регулировалось сформули-
рованными им основными принципами и законами ( принцип относи-
тельности, принцип независимости действия сил, закон равноуско-
ренного движения и др. ).
Достижения Галилея и его современников в области физики дви-
жения ( Кеплер, Декарт, Гюйгенс ) подготовили почву для работ Нь-
ютона, преступившего к оформлению целостного предмета механики в
систему понятий. Продолжая методологическую ориентацию на принци-
Ньютон сформулировал три закона движения и вывел из них ряд
следствий, трактовавшихся прежде как самостоятельные законы. Нь-
ютоновские "Математические начала натуральной философии" подвели
итоги работы по установлению смысла и количественных характерис-
тик основных понятий механики - "прстранство", "время", "масса",
" количество движения", "сила". Для решения задач, связанных с
движением, Ньютон ( вместе с Лейбницем ) создал дифференциальное
и интегральное исчисление - одно из самых мощных математических
средств физики.
Начиная с Ньютона , и вплоть до конца XIX в. механика трак-
туется как общее учение о движении и становится магистральной ли-
нией развития физики. С ее помощью строится физика взаимодейс-
твий, где конкурируют концепции близкодействия и дальнодействия.
Успехи небесной механики, основанные на ньютоновском законе
всемирного тяготения, способствовали победе концепции дальнодейс-
твия. По образу теории тяготения строилась и физика взаимодейс-
твий в области электричества и магнетизма ( Кулон ).
В конце XIX в. физика вплотную поставила вопрос о реальном
существовании атома. Штурм атома шел во всех основных разделах
физики: механике, оптике, электричестве, учении о строении мате-
рии. Каждое из крупнейших научных открытий того времени: открытие
Д. И. Менделеевым периодического закона элементов, Г. Герцем -
Д. Д. Томсоном - электронов и супругами Кюри - радия, по-своему
вело к эксперементальному доказательству существования атома,
ставило задачу изучения закономерностей атомных явлений. Другими
, весьма малых частиц стала рассматриваться как научно установ-
ленный факт. Начатые в 1906 г. Ж. Перреном замечательные экспере-
ментальные исследования броуновского движения подтвердили пра-
вильность малекулярно-кинетической теории этого явления, разрабо-
танной А. Энштейном и М. Смолуховским, и принесли полный триумф
идеям атомизма, которые в новой физике получили не предвиденное
прежде глубокое содержание. Развитие атомистики привело Э. Резер-
форда к открытию атомного ядра и к созданию планетарной модели
атома. Эти открытия положили начало новой физике: отпало положе-
ние о неизменности массы тела: оказалось, что масса тела растет с
увеличением его скорости; химические элементы оказались преврати-
мыми одни в другие; возникла электронная теория, представляющая
новую ступень в развитии физики. Механическая картина мира усту-
пила место электромагнитной.
После открытия электронов и радиоактивности физика стала
развиваться с небывалой прежде быстротой. Из непременимости клас-
сической физики к проблеме теплового излучения родилась знамени-
тая квантовая физика М. Планка. Из конфликта классической механи-
ки и электромагнитной теории Максвелла возникла теория относи-
тельности. Сначала теоретически, а затем эксперементально и про-
мышленно ( ядерная энергетика ) установили связь m и E (E=mc 52 0), а
также зависимость массы движущегося тела от скорости его движе-
ния, покончили с резким противопоставлением материи и движения,
характерным для классической физики. Общая теория относительности
( Энштейн 1916 ), интерпритировавшая поле тяготения как искривле-
ние пространства-времени, обусловленное наличием м