Курсовой проект.
Тема:
Вариант 10.
СОДЕРЖАНИЕ:
Введение
Экономическая постановка задачи..
Математическая постановка задачи..
Выбор метода реализации модели. Обоснование выбора..
Схема алгоритма и его описание.
Краткая характеристика ЭВМ и ее программного обеспечения.
Обоснование выбора языка программирования.
Решение задачи-теста для написания и отладки программы.
Анализ полученных результатов.
Инструкции пользователю и описание программы.
Заключение.
Литература.
Приложение.
3
4
5
6
10
12
15
16
19
20
21
22
23

ВВЕДЕНИЕ
Проникновение математики в экономическую науку связано с преодолением значительных трудностей. В этом отчасти была "повинна" математика, развивающаяся на протяжении нескольких веков в основном в связи с потребностями физики и техники. Но главные причины лежат все же в природе экономических процессов, в специфике экономической науки.
Большинство объектов, изучаемых экономической наукой, может быть охарактеризовано кибернетическим понятием сложная система.
Наиболее распространено понимание системы как совокупности элементов, находящихся во взаимодействии и образующих некоторую целостность, единство. Важным качеством любой системы является эмерджентность - наличие таких свойств, которые не присущи ни одному из элементов, входящих в систему. Поэтому при изучении систем недостаточно пользоваться методом их расчленения на элементы с последующим изучением этих элементов в отдельности. Одна из трудностей экономических исследований - в том, что почти не существует экономических объектов, которые можно было бы рассматривать как отдельные (внесистемные) элементы.
Сложность системы определяется количеством входящих в нее элементов, связями между этими элементами, а также взаимоотношениями между системой и средой. Экономика страны обладает всеми признаками очень сложной системы. Она объединяет огромное число элементов, отличается многообразием внутренних связей и связей с другими системами (природная среда, экономика других стран и т.д.). В народном хозяйстве взаимодействуют природные, технологические, социальные процессы, объективные и субъективные факторы.
Сложность экономики иногда рассматривалась как обоснование невозможности ее моделирования, изучения средствами математики. Но такая точка зрения в принципе неверна. Моделировать можно объект любой природы и любой сложности. И как раз сложные объекты представляют наибольший интерес для моделирования; именно здесь моделирование может дать результаты, которые нельзя получить другими способами исследования.
Потенциальная возможность математического моделирования любых экономических объектов и процессов не означает, разумеется, ее успешной осуществимости при данном уровне экономических и математических знаний, имеющейся конкретной информации и вычислительной технике. И хотя нельзя указать абсолютные границы математической формализуемости экономических проблем, всегда будут существовать еще неформализованные проблемы, а также ситуации, где математическое моделирование недостаточно эффективно.
2. ЭКОНОМИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ

Цеху, располагающему тремя видами металлорежущего оборудования, планируется изготовить в течении определенного периода времени два изделия, причем первое изделие комплектуется на двух деталях А1 и А2, которые должны изготовляться в соответствии 2:1.
Второе изделие также комплектуется на двух деталях А3 и А4, которые изготовляются соответственно в соотношении 4:1
Эффективные фонды времени работы оборудования и нормы штучно-калькуляционного времени, требуемые на изготовление каждой детали на соответствующем оборудовании, приведены в таблице 2.1:
Таблица 2.1
Детали


Группы
оборудования
А1
А2
А3
А4
Эффективный фонд времени


Нормы трудоемкости


I
1.2
1.8
2.4
0
768

II
2.4
0
1.2
2.4
600

III
0
1.2
1.2
1.2
480


Определить производственную программу выпуска деталей А1, А2, А3, А4 при обеспечении заданной комплектности, а также максимально возможную загрузку наличных производственных мощностей.
3. МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ
Общая модель:
m(i=1,2..m) - группы оборудования на цехе.
Ai - ресурсы по i-ой группе оборудования.
n(j=1,2..n) - виды деталей.
ai,j - нормы трудоемкости затраченных на i-м виде оборудования на изготовление единицы j-го вида продукции.
Xj - выпуск продукции j-го вида в оптимальном плане.
Kr - Соотношение деталей в изделии.
Система ограничений:
Ресурсные ограничения:
n
??a i j * x j ? A i (i=1,2,..,m)
j=1
Реальность плана выпуска:
Xj ??0
Ограничение по комплектности:
Xk Kl (k=1,2,…,l); (r=1,2,….,p)
Xr Kp
Целевой функционал:
n
Fmax = ??Xj
j=1
3. ВЫБОР МЕТОДА РЕАЛИЗАЦИИ МОДЕЛИ.
ОБОСНОВАНИЕ МЕТОДА
Симплекс метод - универсальный метод для решения линейной системы уравнений или неравенств и линейного функционала.
Для привидения системы ограничений неравенств к каноническому виду, необходимо в системе ограничений выделить единичный базис.
Ограничения вида “?”- ресурсные ограничения. Справа находится то что мы используем на производстве, слева - то что получаем. При таких ограничения вводят дополнительные переменные с коэффициентом “+1”, образующие единичный базис. В целевую функцию эти переменные войдут с коэффициентом “0”.
Ограничения вида “=”. Часто бывает, что несмотря на то что ограничения имеют вид равенства, единичный базис не выделяется или трудно выделяется. В этом случае вводятся искусственные переменные для создания единичного базиса - Yi. В систему ограничений они входят с коэффициентом “1” , а в целевую функцию с коэффициентом “M”, стремящимся к бесконечности (при Fmin - “+M”, при Fmax - “-M”).
Ограничения вида “?” - Плановые ограничения. Дополнительные переменные (X), несущие определенный экономический смысл - перерасход ресурсов или перевыполнение плана, перепроизводство, добавляются с коэффициентом “-1”, в целевую функцию - с коэффициентом “0”. А искусственные переменные (Y) как в предыдущем случае.
Алгоритм симплекс метода.
(первая симплекс таблица)
Пусть система приведена к каноническому виду.
X1+ q1,m+1 Xm+1 + …. + q1,m+n Xm+n = h1
X2+ q1,m+1 Xm+1 + …. + q1,m+n Xm+n = h1
X3+ q1,m+1 Xm+1 + …. + q1,m+n Xm+n = h1
……………………………………………………………….
Xm+ qm,m+1 Xm+1 + …. + qm,m+n Xm+n =hm
В ней m базисных переменных, k свободных переменных. m+k=n - всего переменных.
Fmin= C1X1+ C2X2+ C3X3+....+ CnXn
Все hi должны быть больше либо равны нулю, где i=1,2...m. На первом шаге в качестве допустимого решения принимаем все Xj=0 (j=m+1,m+2,...,m+k). При этом все базисные переменные Xi=Hi.
Для дальнейших рассуждений вычислений будем пользоваться первой симплекс таблицей (таблица 3.1).
Таблица 3.1.
Симплекс таблица.
C
Б
H
C1
C2

Cm
Cm+1

Cm+k




X1
X2

Xm
Xm+1

Xm+k

C1
C2
C3
:
:
Cm
X1
X2
X3
:
:
Xm
h1
h2
h3
:
:
hm
1
0
0
:
:
0
0
1
0
:
:
0
:
:
:
:
:
:
0
0
0
:
:
0
q1,m+1
q2,m+1
q3,m+1
:
:
qm,m+1
:
:
:
:
:
:
q1,m+k
q2,m+k
q3,m+k
:
:
qm,m+k


F=
F0
??
??

?m
?m+1

?m+k


Первый столбец- коэффициенты в целевой функции при базисных переменных.
Второй столбец - базисные переменные.
Третий столбец - свободные члены (hi?0).
Самая верхняя строка - коэффициенты при целевой функции.
Вторая верхняя строка - сами переменные, входящие в целевую функцию и в систему ограничений.

Основное поле симплекс метода - система коэффициентов из уравнения.
Последняя строка - служит для того, чтобы ответить на вопрос: “оптимален план или нет”.
Для первой итерации F0= ??ci*hi.
?????????????????m - оценки они рассчитываются по формуле:
??j = ? ciqij-cj.
Индексная строка позволяет нам судить об оптимальности плана:
При отыскании Fmin в индексной строке должны быть отрицательные и нулевые оценки.
При отыскании Fmax в индексной строке должны быть нулевые и положительные оценки.
Переход ко второй итерации:
Для этого отыскиваем ключевой (главный) столбец и ключевую (главную) строку.
Ключевым столбцом является тот в котором находится наибольший положительный элемент индексной строки при отыскании Fmin или наименьший отрицательный элемент при отыскании Fmax.
Ключевой строкой называется та, в которой содержится наименьшее положительное частное от деления элементов столбца H на соответствующие элементы ключевого столбца.
На пересечении строки и столбца находится разрешающий элемент.
На этом этапе осуществляется к переходу к последующим итерациям.
Переход к итерациям:
Выводится базис ключевой строки, уступая место переменной из ключевого столбца со своим коэффициентом.
Заполняется строка вновь введенного базиса путем деления соответствующих элементов выделенной строки предыдущей итерации на разрешающий элемент.
Если в главной строке содержится нулевой элемент, то столбец, в котором находиться этот элемент переноситься в последующую итерацию без изменения.
Если в главном столбце имеется нулевой элемент, то строка, в которой он находиться переноситься без изменения в последующую итерацию.
Остальные элементы переносятся по формуле: