Пензенский приборостроительный колледж
на тему:
Метод касательных решения нелинейных уравнений
Выполнил: Ст-т 22п группы ЛЯПИН Р.Н.
Проверила: ______________
Ковылкино – 1999 г.
ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ
студент Ляпин Р.Н. группа 22п
Тема: "Метод касательных решения нелинейных уравнений".
Изучить теоретический материал по заданной теме.
Составить блок схему алгоритма решения задачи .
Написать программу на языке Турбо-Паскаль для решения задачи в общем виде.
Выполнить программу с конкретными значениями исходных данных.
Определить корни уравнения х3 + 0,1 * х2 + 0,4 * х – 1,2 = 0 аналитически и уточнить один из них с точностью до 0,000001 методом касательных
Срок представления работы к защите: 10 мая 1999 г.
Исходные данные для исследования: научная и техническая литература.
Руководитель курсовой работы: Кривозубова С.А.
Задание принял к исполнению: Ляпин Р.Н.
РЕФЕРАТ
Курсовая работа содержит: страниц, 1 график, 5 источников.
Перечень ключевых понятий: производная, метод касательных, программирование, нелинейное уравнение.
Объект исследования: Корни нелинейного уравнения.
Цель работы: Определение корней нелинейного уравнения.
Методы исследования: изучение работ отечественных и зарубежных авторов по данной теме.
Полученные результаты: изучен метод касательных решения нелинейных уравнений; рассмотрена возможность составления программы на языке программирования Турбо-Паскаль 7.0
Область применения: в работе инженера.
СОДЕРЖАНИЕ
стр.


ВВЕДЕНИЕ........................................ 5
1. Краткое описание сущности метода касательных
( метода секущих Ньютона).................... 7
2. Решение нелинейного уравнения аналитически .. 9
3. Блок схема программы ........................ 11
4. Программа на языке PASCAL 7.0 ............... 12
5. Результаты выполнения программы ............. 13
СПИСОК ИСПОЛЬЗОВАННИХ ИСТОЧНИКОВ ............... 14


ВВЕДЕНИЕ
Процедура подготовки и решения задачи на ЭВМ достаточно сложный и трудоемкий процесс, состоящий из следующих этапов:
Постановка задачи (задача, которую предстоит решать на ЭВМ, формулируется пользователем или получается им в виде задания).
Математическая формулировка задачи.
Разработка алгоритма решения задачи.
Написание программы на языке программирования.
Подготовка исходных данных .
Ввод программы и исходных данных в ЭВМ.
Отладка программы.
Тестирование программы.
Решение задачи на ЭВМ и обработка результатов.
В настоящей курсовой работе условие задачи дано в математической формулировке, поэтому необходимость в выполнении этапов 1 и 2 отпадает и сразу можно приступить к разработке алгоритма решения задачи на ЭВМ. Под алгоритмом понимается последовательность арифметических и логических действий над числовыми значениями переменных, приводящих к вычислению результата решения задачи при изменении исходных данных в достаточно широких пределах. Таким образом, при разработке алгоритма решения задачи математическая формулировка преобразуется в процедуру решения, представляющую собой последовательность арифметических действий и логических связей между ними. При этом алгоритм обладает следующими свойствами: детерминированностью, означающей, что применение алгоритма к одним и тем же исходным данным должно приводить к одному и том уже результату; массовость, позволяющей получать результат при различных исходных данных; результативностью, обеспечивающей получение результата через конечное число шагов.
Наиболее наглядным способом описания алгоритмов является описание его в виде схем. При этом алгоритм представляется последовательность блоков, выполняющих определенные функции, и связей между ними. Внутри блоков указывается информация, характеризующая выполняемые ими функции. Блоки схемы имеют сквозную нумерацию.
Конфигурация и размеры блоков, а также порядок построения схем определяются ГОСТ 19.002-80 и ГОСТ 19.003-80.
На этапе 4 составляется программа на языке Турбо-Паскаль. При описании программы необходимо использовать характерные приемы программирования и учитывать специфику языка. В качестве языка программирования выбран язык ПАСКАЛЬ ввиду его наглядности и облегченного понимания для начинающих программистов, а также возможности в дальнейшем использовать для решения более трудных задач.
Этапы алгоритмизации и программирования являются наиболее трудоемкими, поэтому им уделяется большое внимание.
В процессе выполнения курсовой работы студент готовит исходные данные, вводит программу и исходные данные. При работе ввод программы и исходных данных осуществляется с клавиатуры дисплея.
Отладка программы состоит в обнаружении и исправлении ошибок, допущенных на всех этапах подготовки задач к решению на ПЭВМ. Синтаксис ошибки обнаруживается компилятором, который выдает сообщение, указывающее место и тип ошибки. Обнаружение семантических ошибок осуществляется на этапе тестирования программы, в котором проверяется правильность выполнения программы на упрощенном варианте исходных данных или с помощью контрольных точек или в режиме пошагового исполнения.
Задание при обработке на ЭВМ проходит ряд шагов: компиляцию, редактирование (компоновку) и выполнение.
Обработка результатов решения задачи осуществляется с помощью ЭВМ. Выводимые результаты оформлены в виде, удобном для восприятия.
1. Краткое описание сущности метода касательных
( метода секущих Ньютона)
Пусть на отрезке [a; b] отделен корень с уравнения f (x) = 0 и f -функция непрерывна на отрезке [a; b], а на интервале ]a; b[ существуют отличные от нуля производные f ’ и f ”.
Так как f ’(x) ? 0 , то запишем уравнение f (x) = 0 в виде :
x = x – ( f (x) / f ’(x)) (1)
Решая его методом итераций можем записать :
xn+1 = x n– ( f (x n) / f ’(x n)) (2)
Если на отрезке [a;b] f ’(x) * f “(x) > 0, то нул – евое приближение выбираем x0=a. Рассмотрим геометрический смысл метода . Рассмотрим график функции y=f(x). Пусть для определенности f ‘(x) > 0 и f “(x) > 0 (рис. 1). Проведем касательную к графику функции в точке B (b, f (b)). Ее уравнение будет иметь вид :
y = f (b) + f ’(b) * (x – b)
Полагая в уравнении y = 0 и учитывая что f ’(x) ? 0, решаем его относительно x. Получим :
x = b – (f (b) /f ‘(b))
Нашли абсциссу x1 точки c1 пересечения касательной с осью ox :
x1 = b – (f (b) – f ’ (b))
Проведем касательную к графику функции в точке b1 (x1; f (x1)).Найдем абсциссу x2 точки с2 пересечения касательной с осью Ox :
x2 = x1 – (f (x1) / ( f ’(x1))
Вообще :
xk+1 = x k – ( f (x k) / f ’(x k)) (3)
Таким образом, формула (3) дает последовательные приближения (xk) корня, получаемые из уравнения касательной , проведенной к графику функции в точке b k (x k; f (x k0) метод уточнения корня c [a;b] уравнения f (x) = 0 с помощью формулы (3) называется методом касательной или методом Ньютона.
Геометрический смысл метода касательных состоит в замене дуги y = f (x) касательной, одной к одной из крайних точек . Начальное приближение x 0 = a или x0 = b брать таким, чтобы вся последовательность приближения х k принадлежала интервалу ]a;b[ . В случае существования производных f ’, f ”, сохраняющих свои знаки в интервале, за х0 берется тот конец отрезка [a;b], для которого выполняется условие f ’(х0) * f (х0) > 0. Для оценки приближения используется общая формула :
|c-x k-1 | ? | f (x k+1)/m| , где m = min f ’(x) на отрезке [a;b] .
На практике проще пользоваться другим правилом :
Если на отрезке [a;b] выполняется условие 0 < m < | f (x)| и ?????заданная точность решения, то неравенство | x k+1-x k| ? ??? влечет выполнение неравенства |c-x k-1| ? ????
В этом случае процесс последовательного приближения продолжают до тех пор, пока не выполнится неравенство :
|c-x k-1| ? ????
2. Решение нелинейного уравнения аналитически
Определим корни уравнения х3 + 0,1х2 + 0,4х – 1,2 = 0 аналитически. Находим : f (x) = х3 + 0,1х2 + 0,4х – 1,2
f ‘ (x) = 3х2 + 0,1х + 0,4
f (–1) = –2,5 < 0 f (0) = –1,2 < 0 f (+1) = 0,3 > 0
x
- ?
-1
0
+1
+ ?

sign f (x)
-
-
-
+
+


Следовательно, уравнение имеет действительный корень, лежащий в промежутке [ 0; +1 ].
Приведем уравнение к виду x = ? (x) , так , чтобы | ? ‘ (x) | <1 при 0 ??x ? +1.
Так как max | f ’(x) | = f ’(+1) = 3 + 0,1 + 0,4 = 3,5 то можно взять R = 2.
Тогда ? (x) = x – ( f (x) / R) = x – 0,5 х3 – 0,05 х2 – 0,2 х + 0,6 = – 0,5 х3 – 0,05 х2 + 0,8 х + 0,6.
Пусть х0 = 0 , тогда х n+1 = ? (х n).
Вычисления расположим в таблице.
n
хn
х2n
х3n
? (хn).
f (x)

1
1
1
1
0,85
-0,17363

2
0,85
0,7225
0,614125
0,9368125
0,08465

3
0,9368125
0,87761766
0,822163194
0,89448752
-0,04651

4
0,89448752
0,800107923
0,715686552
0,917741344
0,024288

5
0,917741344
0,842249174
0,772966889
0,905597172
-0,01306

6
0,905597172
0,820106238
0,74268589
0,912129481
0,006923

7
0,912129481
0,83198019
0,758873659
0,908667746
-0,0037

8
0,908667746
0,825677072
0,750266124
0,910517281
0,001968

9
0,910517281
0,829041719
0,754856812
0,909533333
-0,00105

10
0,9095