Міністерство освіти України
ДАЛПУ
Кафедра автоматизації
технологічних процесів і приладобудування

КУРСОВА РОБОТА

з курсу “Математичне моделювання на ЕОМ”
на тему “Розв’язок диференціального рівняння
виду апу(п)+ап-1у(п-1)+…+а1у1+а0у=кх при заданих
початкових умовах з автоматичним вибором кроку
методом Ейлера”
Виконала студентка групи БА-4-97
Богданова Ольга Олександрівна
Холоденко Вероніка Миколаївна
Перевірила Заргун Валентина Василівна


1998

Блок-схема алгоритма

Блок-схема алгоритма
начало
у/=f(x,y)
y(x0)=y0
x0, x0+a
h, h/2
k:=0
xk+1/2:=xk+h/2
yk+1/2:=yk+f(xk, yk)h/2
?k:= f(xk+1/2, yk+1/2)
xk+1:=xk+h
yk+1:=yk+?kh
нет k:=n
да

x0, y0,
x1, y1…
xn, yn
конец



ПОСТАНОВКА ЗАДАЧИ И МЕТОД РЕШЕНИЯ
Решить дифференциальное уравнение у/=f(x,y) численным методом - это значит для заданной последовательности аргументов х0, х1…, хn и числа у0, не определяя функцию у=F(x), найти такие значения у1, у2,…, уn, что уi=F(xi)(i=1,2,…, n) и F(x0)=y0.
Таким образом, численные методы позволяют вместо нахождения функции
У=F(x) получить таблицу значений этой функции для заданной последовательности аргументов. Величина h=xk-xk-1 называется шагом интегрирования.
Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции у(х). Он является сравнительно грубым и применяется в основном для ориентировочных расчетов. Однако идеи, положенные в основу метода Эйлера, являются исходными для ряда других методов.
Рассмотрим дифференциальное уравнение первого порядка
y/=f(x,y) (1)
с начальным условием
x=x0, y(x0)=y0 (2)
Требуется найти решение уравнения (1) на отрезке [а,b].
Разобьем отрезок [a, b] на n равных частей и получим последовательность х0, х1, х2,…, хn, где xi=x0+ih (i=0,1,…, n), а h=(b-a)/n-шаг интегрирования.
В методе Эйлера приближенные значения у(хi)(yi вычисляются последовательно по формулам уi+hf(xi, yi) (i=0,1,2…).
При этом искомая интегральная кривая у=у(х), проходящая через точку М0(х0, у0), заменяется ломаной М0М1М2… с вершинами Мi(xi, yi) (i=0,1,2,…); каждое звено МiMi+1 этой ломаной, называемой ломаной Эйлера, имеет направление, совпадающее с направлением той интегральной кривой уравнения (1), которая проходит через точку Мi.
Если правая часть уравнения (1) в некотором прямоугольнике R{|x-x0|(a, |y-y0|(b}удовлетворяет условиям:
|f(x, y1)- f(x, y2)| ( N|y1-y2| (N=const),
|df/dx|=|df/dx+f(df/dy)| ( M (M=const),

то имеет место следующая оценка погрешности:
|y(xn)-yn| ( hM/2N[(1+hN)n-1], (3)
где у(хn)-значение точного решения уравнения(1) при х=хn, а уn- приближенное значение, полученное на n-ом шаге.
Формула (3) имеет в основном теоретическое применение. На практике иногда оказывается более удобным двойной просчет: сначала расчет ведется с шагом h, затем шаг дробят и повторный расчет ведется с шагом h/2. Погрешность более точного значения уn* оценивается формулой
|yn-y(xn)|(|yn*-yn|.
Метод Эйлера легко распространяется на системы дифференциальных уравнений и на дифференциальные уравнения высших порядков. Последние должны быть предварительно приведены к системе дифференциальных уравнений первого порядка.
Модифицированный метод Эйлера более точен.
Рассмотрим дифференциальное уравнение (1) y/=f(x,y)
с начальным условием y(x0)=y0. Разобьем наш участок интегрирования на n
равных частей. На малом участке [x0,x0+h]
у интегральную кривую заменим прямой
Nk/ y=y(x) линией. Получаем точку Мк(хк,ук).

Мк Мк/
yk+1
yk

хк хк1/2 xk+h=xk1 х


Через Мк проводим касательную: у=ук=f(xk,yk)(x-xk).
Делим отрезок (хк,хк1) пополам:
xNk/=xk+h/2=xk+1/2
yNk/=yk+f(xk,yk)h/2=yk+yk+1/2
Получаем точку Nk/. В этой точке строим следующую касательную:
y(xk+1/2)=f(xk+1/2, yk+1/2)=?k
Из точки Мк проводим прямую с угловым коэффициентом ?к и определяем точку пересечения этой прямой с прямой Хк1. Получаем точку Мк/. В качестве ук+1 принимаем ординату точки Мк/. Тогда:
ук+1=ук+?кh
xk+1=xk+h
(4) ?k=f(xk+h/2, yk+f(xk,Yk)h/2)
yk=yk-1+f(xk-1,yk-1)h
(4)-рекурентные формулы метода Эйлера.
Сначала вычисляют вспомогательные значения искомой функции ук+1/2 в точках хк+1/2, затем находят значение правой части уравнения (1) в средней точке y/k+1/2=f(xk+1/2, yk+1/2) и определяют ук+1.
Для оценки погрешности в точке хк проводят вычисления ук с шагом h, затем с шагом 2h и берут 1/3 разницы этих значений:
| ук*-у(хк)|=1/3(yk*-yk),
где у(х)-точное решение дифференциального уравнения.

Таким образом, методом Эйлера можно решать уравнения любых порядков. Например, чтобы решить уравнение второго порядка y//=f(y/,y,x) c начальными условиями y/(x0)=y/0, y(x0)=y0, выполняется замена:
y/=z
z/=f(x,y,z)
Тем самым преобразуются начальные условия: y(x0)=y0, z(x0)=z0, z0=y/0.

РЕШЕНИЕ КОНТРОЛЬНОГО ПРИМЕРА
Приведем расчет дифференциального уравнения первого, второго и третьего порядка методом Эйлера
1. Пусть дано дифференциальное уравнение первого порядка:
y/=2x-y
Требуется найти решение на отрезке [0,1] c шагом h=(1-0)/5=0,2
Начальные условия: у0=1;
Пользуясь рекурентными формулами (4), находим:
1). x1=0,2; х1/2=0,1; y(x1)=y(x0)+?0h; y(x1/2)=y(x0)+f(x0,y0)h/2;
f(x0,y0)=2(0-1=-1
y(x1/2)=1-1(0,1=0,9
?0=2(0,1-0,9=-0,7
y1=1-0,1(0,2=0,86
2). y(x2)=y(x1)+?1h; x2=0,2+0,2=0,4; x1+1/2=x1+h/2=0,2+0,1=0,3
y(x1+1/2)=y(x1)+f(x1,y(x1))h/2
f(x1,y1)=2(0,2-0,86=-0,46
y(x1+1/2)=0,86-0,46(0,1=0,814
?1=2*0,3-0,814=-0,214
y2=0,86-0,214*0,2=0,8172
3). x3=0,4+0,2=0,6; x2+1/2=x2+h/2=0,4+0,1=0,5
f(x2,y2)=2*0,4-0,8172=-0,0172
y2+1/2=0,8172-0,0172*0,1=0,81548
?2=2*0,5-0,81548=0,18452
y3=0,8172+0,18452*0,2=0,854104
4).x4=0,8; x3+1/2=x3+h/2=0,6+0,1=0,7
f(x3,y3)=2*0,6-0,854104=0,345896
y3+1/2=0,854104+0,345896*0,1=0,8886936
?3=2*0,7-0,89=0,5113064
y4=0,854104+0,5113064*0,2=0,95636528
5).x5=1; x4+1/2=0,8+0,1=0,9
f(x4,y4)=2*0,8-0,956=0,64363472
y4+1/2=0,956+0,643*0,1=1,020728752;
?4=2*0,9-1,02=0,779271248
y5=0,956+0,7792*0,2=1,11221953
2. Дано уравнение второго порядка:
y//=2x-y+y/
Находим решение на том же отрезке [0,1] c шагом h=0,2;
Замена: y/=z
z/=2x-y+z
Начальные условия: у0=1
z0=1
1).x1=0,2; x1/2=0,1
y(z1)=y(z0)+?0h z(x1,y1)=z(x0,y0)+?0h
y(z1/2)=y(z0)+f(z0,y0)h/2 z(x1/2,y1/2)=z