МЕТОД ГАУССА С ВЫБОРОМ ГЛАВНОГО ЭЛЕМЕНТА. Основная идея метода. Может оказаться, что система Ax=f (1) имеет единственное решение, хотя какой-либо из угловых миноров матрицы А равен нулю. В этом случае обычный метод Гаусса оказывается непригодным, но может быть применен метод Гаусса с выбором главного элемента. Основная идея метода состоит в том, чтобы на очередном шаге исключать не следующее по номеру неизвестное, а то неизвестное, коэффициент при котором является наибольшим по модулю. Таким образом, в качестве ведущего элемента здесь выбирается главный, т.е. наибольший по модулю элемент. Тем самым, если , то в процессе вычислений не будет происходить деление на нуль. Различные варианты метода Гаусса с выбором главного элемента проиллюстрируем на примере системы из двух уравнений (2)
Предположим, что . Тогда на первом шаге будем исключать переменное . Такой прием эквивалентен тому, что система (2) переписывается в виде (3)
и к (3) применяется первый шаг обычного метода Гаусса. Указанный способ исключения называется методом Гаусса с выбором главного элемента по строке. Он эквивалентен применению обычного метода Гаусса к системе, в которой на каждом шаге исключения проводится соответствующая перенумерация переменных. Применяется также метод Гаусса с выбором главного элемента по столбцу. Предположим, что . Перепишем систему (2) в виде
и к новой системе применим на первом шаге обычный метод Гаусса. Таким образом, метод Гаусса с выбором главного элемента по столбцу эквивалентен применению обычного метода Гаусса к системе, в которой на каждом шаге исключения проводится соответствующая перенумерация уравнений. Иногда применяется и метод Гаусса с выбором главного элемента по всей матрице, когда в качестве ведущего выбирается максимальный по модулю элемент среди всех элементов матрицы системы. Матрицы перестановок. Ранее было показано, что обычный метод Гаусса можно записать в виде
где -элементарные нижние треугольные матрицы. Чтобы получить аналогичную запись метода Гаусса с выбором главного элемента, необходимо рассмотреть матрицы перестановок. ОПРЕДЕЛЕНИЕ 1. Матрицей перестановок Р называется квадратная матрица, у которой в каждой строке и в каждом столбце только один элемент отличен от нуля и равен единице. ОПРЕДЕЛЕНИЕ 2. Элементарной матрицей перестановок называется матрица, полученная из единичной матрицы перестановкой к-й и l-й строк. Например, элементарными матрицами перестановок третьего порядка являются матрицы
Можно отметить следующие свойства элементарных матриц перестановок, вытекающие непосредственно из их определения . Произведение двух (а следовательно, и любого числа) элементарных матриц перестановок является матрицей перестановок (не обязательно элементарной). Для любой квадратной матрицы А матрица отличается от А перестановкой к-й и l-é ñòðîê. Для любой квадратной матрицы А матрица отличается от А перестановкой к-го и l-го столбцов. Применение элементарных матриц перестановок для описания метода Гаусса с выбором главного элемента по столбцу можно пояснить на следующем примере системы третьего порядка: (4) Система имеет вид (1), где (5) Максимальный элемент первого столбца матрицы А находится во второй строке. Поэтому надо поменять местами вторую и первую строки и перейти к эквивалентной системе (6) Систему (6) можно записать в виде (7) т.е. она получается из системы (4) путем умножения на матрицу перестановок
Далее, к системе (6) надо применить первый шаг обычного метода исключения Гаусса. Этот шаг эквивалентен умножению системы (7) на элементарную нижнюю треугольную матрицу
В результате от системы (7) перейдем к эквивалентной системе (8) или в развернутом виде (9) Из последних двух уравнений системы (9) надо теперь исключить переменное . Поскольку максимальным элементом первого столбца укороченной системы (10) является элемент второй строки, делаем в (10) перестановку строк и тем самым от системы (9) переходим к эквивалентной системе (11) которую можно записать в матричном виде как . (12) Таким образом система (12) получена из (8) применением элемен-тарной матрицы перестановок
Далее к системе (11) надо применить второй шаг исключения обычного метода Гаусса. Это эквивалентно умножению системы (11) на элементарную нижнюю треугольную матрицу
В результате получим систему (13) или (14) Заключительный шаг прямого хода метода Гаусса состоит в замене последнего уравнения системы (14) уравнением
что эквивалентно умножению (13) на элементарную нижнюю треугольную матрицу
Таким образом, для рассмотренного примера процесс исключения Гаусса с выбором главного элемента по столбцу записывается в виде (15) По построению матрица (16) является верхней треугольной матрицей с единичной главной диагональю. Отличие от обычного метода Гаусса состоит в том, что в качестве сомножителей в (16) наряду с элементарными треугольными матрицами могут присутствовать элементарные матрицы перестановок . Покажем еще, что из (16) следует разложение PA=LU, (17) где L -нижняя треугольная матрица, имеющая обратную, P - матрица перестановок. Для этого найдем матрицу (18) По свойству 2) матрица получается из матрицы перестановкой второй и третьей строк,
Матрица согласно свойству 3) получается из перестановкой второго и третьего столбцов
т.е. -нижняя треугольная матрица, имеющая обратную. Из (18), учитывая равенство , получим (19) Отсюда и из (16) видно, что
где обозначено . Поскольку Р-матрица перестановок и L-нижняя треугольная матрица, свойство (17) доказано. Оно означает, что метод Гаусса с выбором главного элемента по столбцу эквивалентен обычному методу Гаусса, примененному к матрице РА, т.е. к системе, полученной из исходной системы перестановкой некоторых уравнений. Общий вывод. Результат, полученный ранее для очень частного примера, справедлив и в случае общей системы уравнений (1). А именно, метод Гаусса с выбором главного элемента по столбцу можно записать в виде (20) где - элементарные матрицы перестановок такие, что и -элементарные нижние треугольные матрицы. Отсюда, используя соотношения перестановочности, аналогичные (19), можно показать, что метод Гаусса с выбором главного элемента эквивалентен обычному методу Гаусса, примененному к системе PAx=Pf, (21) где Р - некоторая матрица перестановок. Теоретическое обоснование метода Гаусса с выбором главного элемента содержится в следующей теореме. ТЕОРЕМА 1. Если то существует матрица перестано- вок Р такая, что матрица РА имеет отличные от нуля угловые ми- норы. Доказательство в п.4. СЛЕДСТВИЕ. Если то существует матрица престана- вок Р такая, что справедливо разложение РА=LU,