Р Е Ф Е Р А Т
на тему :
“ Динамическое представление сигналов “
Выполнил: Зазимко С.А.
Принял : Котоусов А.С.
МОСКВА
Динамическое представление сигналов.
Многие задачи радиотехники требуют специфической формы представления сигналов. Для решения этих задач необходимо располагать не только мгновенным значением сигнала, но и знать как он ведет себя во времени, знать его поведение в “прошлом” и “будущем”.
ПРИНЦИП ДИНАМИЧЕСКОГО ПРЕДСТАВЛЕНИЯ.
Данный способ получения моделей сигналов заключается в следующем:
Реальный сигнал представляется суммой некоторых элементарных сигналов, возникающих в последовательные моменты времени. Теперь, если мы устремим к нулю длительность отдельных элементарных сигналов, то в пределе получим точное представление исходного сигнала. Такой способ описания сигналов называется динамическим представлением , подчеркивая тем самым развивающийся во времени характер процесса.
На практике широкое применение нашли два способа динамического представления.
Первый способ в качестве элементарных сигналов использует ступенчатые функции, которые возникают через равные промежутки времени ( . Высота каждой ступеньки равна приращению сигнала на интервале времени (. В результате сигнал может быть представлен как на рисунке 1.

рис. 1
При втором способе элементарными сигналами служат прямоугольные импульсы. Эти импульсы непосредственно примыкают друг к другу и образуют последовательность, вписанную в кривую или описанную вокруг нее . В этом случае исходный сигнал имеет вид как на рисунке 2.

рис. 2
Теперь рассмотрим свойства элементарных сигналов. Для начала : используемого для динамического представления по первому способу.
ФУНКЦИЯ ВКЛЮЧЕНИЯ.
Допустим имеется сигнал, математическая модель которого выражается системой :
( 0, t < -(,
u(t) ( ( 0.5(t/(+1), -( ( t ( (, (1)
( 1, t > (.
Такая функция описывает процесс перехода некоторого физического объекта из “нулевого” в “единичное” состояние.

Переход совершается по линейному закону за время 2(. Теперь если параметр ( устремить к нулю, то в пределе переход из одного состояния в другое будет происходить мгновенно. Такая математическая модель предельного сигнала получила название функции включения или функции Хевисайда :
((((( ( ((((((( t < ((
((t( (( (( ((((((( t ( (( (2)
( (((((( t ( ((
В общем случае функция включения может быть смещена относительно начала отсчета времени на величину t0. Запись смещенной функции такова :
((((( ( ((((((( t < t0(
((t - t0( ( ( ((((((( t ( t0( (3)
( (((((( t ( t0(

ДИНАМИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ПРОИЗВОЛЬНОГО СИГНАЛА ПОСРЕДСТВОМ ФУНКЦИЙ ВКЛЮЧЕНИЯ.
Рассмотрим некоторый сигнал S(t), причем для определенности скажем, что S(t)=0 при t<0. Пусть {(,2(,3(,...} - последовательность моментов времени и {S1,S2,S3,...} - отвечающая им последовательность значений сигнала. Если начальное значение сигнала есть S0=S(0), то текущее значение сигнала при любом t можно приближенно представить в виде суммы ступенчатых функций :
(
s(t)(s0((t)+(s1-s0)((t-()+...=s0((t)+((sk-sk-1)((t-k().
k=1
Если теперь шаг ( устремить к нулю. то дискретную переменную k( можно заменить непрерывной переменной (. При этом малые приращения значения сигнала превращаются в дифференциалы ds=(ds/d()d( , и мы получаем формулу динамического представления произвольного сигнала посредством функций Хевисайда
(
( ds
S(t)=s0 ((t) + ( ((t-() d( (4)
( d(
0
Переходя ко второму способу динамического представления сигнала , когда элементами разложения служат короткие импульсы, следует ввести новое важное понятие - понятие дельта-функции.
ДЕЛЬТА - ФУНКЦИЯ .
Рассмотрим импульсный сигнал прямоугольной формы, заданный следующим образом :

1 ( ( ( (
u(t;() = ----- ( ( (t + ---- ) - ( (t - ---- ) ( (5)
( ( 2 2 (


При любом выборе параметра ( площадь этого импульса
равна единице :
(
П = ( u dt = 1
- (
Например, если u - напряжение, то П = 1 В*с.
Теперь устремим величину ( к нулю. Импульс, сокращаясь по длительности, сохраняет свою площадь, поэтому его высота должна неограниченно возрастать. Предел последовательности таких функций при ( ( 0 носит название дельта-функции , или функции Дирака :

((t) = lim u (t;()
((0
Дельта функция - интересный математический объект. Будучи равной нулю всюдю, кроме как в точке t = 0  дельта-функция тем не менее обладает единичным интегралом. А вот так выглядит символическое изображение дельта-функции :

ДИНАМИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ СИГНАЛА ПОСРЕДСТВОМ ДЕЛЬТА-ФУНКЦИЙ.
Теперь вернемся к задаче описания аналогового сигнала суммой примыкающих друг к другу прямоугольных импульсов (рис. 2) . С помощью дельта-функции u (t) представимо в виде совокупности примыкающих импульсов. Если Sk - значение сигнала на k - ом отсчете, то элементарный импульс с номером k представляется как :
(k(t) = Sk [ ((t - tk) - ((t - tk - () ] (6)

В соответствии с принципом динамического представления исходный сигнал S (t) должен рассматриваться как сумма таких элементарных слагаемых :
(
S(t) = ( ( (t) (7)
k= - ( k
В этой сумме отличным от нуля будет только один член, а именно тот, что удовлетворяет условию для t :
tk < t < tk+1
Теперь, если произвести подстановку формулы (6) в (7) предварительно разделив и умножив на величину шага (, то
( 1
S(t) = ( Sk --- [ ((t - tk) - ((t - tk - () ] (
k=- ( (
Переходя к пределу при ( ( 0 , необходимо суммирование заменить интегрированием по формальной переменной (, дифференциал которой d( ,будет отвечать величине ( .
Поскольку
1
lim [ ((t - tk) - ((t - tk - () ] ---
((( (
получим искомую формулу динамического представления сигнала
(
S (t) = ( s (() ((t - () d(
- (
Итак, если непрерывную функцию умножить на дельта-функцию и произведение проинтегрировать по времени, то результат будет равен значению непрерывной функции в той точке, где сосредоточен ( - импульс. Принято говорить, что в этом состоит фильтрующее свойство дельта-функции.

Из определения дельта-функции следует (3) . Следовательно, интеграл дельта-функции от - ( до t есть единичный скачок , и дельта-функцию можно рассматривать как производную единичного скачка :
((t) = 1’ (t) ;
((t-t0) = 1’ (t-t0) .
Обобщенные функции как математические модели сигналов.
В классической математике полагают, что функция S(t) должна принемать какие-то значения в каждой точке оси t . Однако рассмотренная функция ((t) не вписывается в эти рамки - ее значение при t = 0 не определено вообще, хотя эта функция и имеет единичный интеграл. Возникает необходимость расширить понятие функции как математической модели сигнала. Для этого в математике была введено принципиально новое понятие обобщенной функции.
В основе идеи обобщенной функции лежит простое интуитивное соображение. Когда мы держим в руках какой-нибудь предмет , то стараемся изучить его со всех сторон, как бы получить проекции этого предмета на всевозможные плоскости. Аналогом проекции исследуемой функции ((t) может служить, например, значение интеграла
(
( ((t) ((t) dt (8)
- (
при известной функции ((t) , которую называют пробной функцией.
Каждой функции ((t) отвечает, в свою очередь, некоторое конкретное числовое значение. Поэтому говорят, что формула (8) задает некоторый функционал на множестве пробных функций ((t). Непосредственно видно, что данный функционал линеен, то есть
((, ((( ( ((2) = ??(,(() + (((,(2).
Если этот функционал к тому же еще и непрерывен, то говорят, что на множестве пробных функций ((t) задана обобщенная функция ((t) . Следует сказат