ГАЗОВАЯ ХРОМАТОГРАФИЯ Содержание: Сущность хроматографического метода Классификация методов хроматографии Газоадсорбционная хроматография Газожидкостная хроматография Аппаратурное оформление процесса Области применения газовой хроматографии Литература Сущность хроматографического метода С необходимостью разделения смеси веществ на составляющие ее компоненты приходится сталкиваться как химику-синтетику, химику-аналитику, так и технологу, геологу, физику, биологу и многим другим специалистам. Особое значение разделение смеси веществ приобрело в последние десятилетия в связи с проблемой получения сверхчистых веществ. Разделение смеси не вызывает особых трудностей, если ее компоненты находятся в различных фазах. Оно существенно осложняется, если компоненты смеси образуют одну фазу. В этом случае приходится изменять агрегатное состояние отдельных компонентов (например, добиться их выпадения в осадок), либо применять химические или физические методы разделения. В основе последних лежат кинетические явления или фазовые равновесия. Такие широко известные методы разделения, как дистилляция, кристаллизация, экстракция и адсорбция основаны на изменении фазовых равновесии. В этих процессах молекулы веществ, образующих смесь, переходят через границу раздела, стремясь к такому распределению между фазами, при котором в каждой из них устанавливается постоянная равновесная концентрация. Если свойства компонентов исследуемой смеси близки, то достаточная степень разделения достигается лишь многократным повторением элементарного акта разделения. Такой процесс, например, осуществляется в насадочных или тарельчатых ректификационных колоннах. Следует отметить, что в таких случаях полное разделение возможно только для простых (не более чем трехкомпонентных) систем. Более полного разделения можно достичь, если на эффект, вызываемый многократным установлением фазовых равновесий, наложить действие кинетического фактора. В тех случаях, когда используются кинетические явления (например, при молекулярной дистилляции), через поверхность раздела фаз и лишь в одном направлении переносятся молекулы только одного вещества. Если разделение смеси производить в таких системах, в которых одна из фаз (подвижная) перемещается относительно другой (неподвижной), то улавливание и удаление молекул, покидающих поверхность раздела фаз, осуществляется благодаря постоянному перемещению подвижной фазы. Как и при фазовом равновесии, молекулы, выходящие из подвижной фазы, возвращаются в нее, попадая, однако, не в прежний элемент ее объема, а в новый. Если в процессе разделения фазовые переходы повторять многократно, то можно получить высокую эффективность разделения. Так как фазовые переходы связаны с поверхностью раздела, подвижная и неподвижная фазы должны обладать большой поверхностью соприкосновения. Кроме того, вследствие наличия диффузионных процессов, снижающих эффективность разделения, обе фазы должны иметь относительно небольшую толщину взаимодействующего слоя. В какой-то степени эти требования выполняются в методе разделения смеси веществ, получившем название хроматографического. Впервые хроматографическое разделение сложной смеси (хлорофилла) было осуществлено М. С. Цветом в 1903 г . Если в качестве неподвижной фазы взять мелкоизмельченный сорбент и наполнить им трубку (стеклянную или металлическую) , а движение подвижной фазы (жидкости или газа) осуществлять за счет перепада давления на концах этой трубки, то последняя будет представлять собой хроматографическую колонку, называемую так по аналогии с ректификационной колонкой для дистилляционного разделения. Разделяемая смесь веществ вместе с потоком подвижной фазы поступает в хроматографическую колонку. При контакте с поверхностью неподвижной фазы каждый из компонентов разделяемой смеси распределяется между подвижной и неподвижной фазами в соответствии с его свойствами, например адсорбируемостью или растворимостью. Вследствие непрерывного движения подвижной фазы лишь часть распределяющегося компонента успевает вступить во взаимодействие с неподвижной фазой. Другая же его часть продвигается дальше в направлении потока и вступает во взаимодействие с другим участком поверхности неподвижной фазы. Поэтому распределение вещества между подвижной и неподвижной фазами происходит на небольшом слое неподвижной фазы только при достаточно медленном движении подвижной фазы. Поглощенные неподвижной фазой компоненты смеси не участвуют в перемещении подвижной фазы до тех пор, пока они не десорбируются и не будут снова перенесены в подвижную фазу. Поэтому каждому из них для прохождения всего слоя неподвижной фазы в колонке потребуется большее время, чем для молекул подвижной фазы. Если молекулы разных компонентов разделяемой смеси обладают различной степенью сродства к неподвижной фазе (различной адсорбируемостью или растворимостью), то время пребывания их в этой фазе, а следовательно, и средняя скорость передвижения по колонке различны. При достаточной длине колонки это различие может привести к полному разделению смеси на составляющие ее компоненты. Применение хроматографического метода не ограничивается лишь разделением и анализом смеси веществ. В последнее время хроматография широко используется и как метод, научного исследования, например, для исследования свойств сложных систем, в частности растворов. Итак, хроматографией следует называть процесс, основанный на перемещении дискретной зоны вещества вдоль слоя сорбента в потоке подвижной фазы и связанный с многократным повторением сорбционных и десорбционных актов. Хроматографический процесс осуществляется при сорбционном распределении вещества между двумя фазами, одна из которых перемещается относительно другой. Состав смеси, покидающей хроматографическую колонку, непрерывно изменяется. В то время как в таких процессах, как экстракция или ректификация, можно отбирать в течение всего процесса непрерывно одну и ту же фракцию, или одно и то же вещество, в хроматографическом процессе, за исключением специальных случаев, когда имеет место движение слоя сорбента, этого делать нельзя. Термин «хроматография» относится как к самому процессу, так и к научной дисциплине, его изучающей, использующей и разрабатывающей аппаратурное оформление.
Классификация методов хроматографии Многообразие вариантов хроматографического метода, возникшее в связи с широким его развитием, вызывает необходимость их классификации. К основным признакам классификации относятся: 1) агрегатное состояние фаз; 2) природа элементарного акта; 3) способ относительного перемещения фаз; 4) способ аппаратурного оформления процесса; 5) цель осуществления процесса. 1) Классификация по агрегатному состоянию фаз относится к хроматографии в целом. Газовой хроматографией называется хроматографический метод, в котором в качестве подвижной фазы применяется газ или пар. В свою очередь газовая хроматография может быть разделена на газо-адсорбционную (газо-твердую) и газо-жидкостную. В первом случае неподвижной фазой служит твердое вещество — адсорбент, во втором — жидкость, распределенная тонким слоем по поверхности какого-либо твердого носителя (зерненого материала, стенок колонки). 2) Классификация на основе природы элементарного акта. Если неподвижной фазой является жидкость, то элементарным актом, как правило, является акт растворения. В этом случае анализируемое вещество растворяется в жидкой неподвижной фазе и распределяется между неподвижной, и подвижной фазами. Это распределительная хроматография. Газо-жидкостная хроматография — один из вариантов распределительной хроматографии. Если неподвижной фазой служит твердое вещество — адсорбент, то элементарным актом является процесс адсорбции вещества. Следовательно, газо-твердая хроматография является адсорбционной хроматографией. Следует, однако, иметь в виду, что в газо-жидкостной хроматографии определенную роль может играть адсорбция на межфазных границах (газ - жидкость и жидкость - твердый носитель) и в газо-адсорбционной — процесс растворения. 3) По способам перемещения фаз различают три метода: проявительная, или элюентная, фронтальная и вытеснительная хроматография. Рис.1 Схема образования зон в проявите- льном методе и распределения концент- рации в зонах Проявительная хроматография. Заполненную сорбентом колонку промывают чистым газом Е, обычно сорбирующимся слабее всех остальных компонентов смеси. Затем, не прекращая потока газа Е, в колонку вводят порцию анализируемой смеси, например, вещества А и В, которые сорбируются в верхних слоях сорбента (рис. 1, а) и вследствие движения газа постепенно перемещаются вдоль слоя сорбента с различными для каждого компонента скоростями. В результате зона лучше сорбирующегося вещества, например В, постоянно отстает от зоны хуже сорбирующегося вещества А (рис. 1, б, в) и при достаточной длине колонки смесь веществ А и В разделяется (рис. 1,г). Изменение концентрации вымываемых веществ по выходе из колонки может быть зафиксировано в виде