ГОРОДСКОЙ КЛАССИЧЕСКИЙ ЛИЦЕЙ РЕФЕРАТ Великая теорема Ферма Подготовил: Петров А. А., 9Б класс (физ-мат) г. Кемерово - 1998 Содержание Биография Ферма История Большой теоремы Ферма Доказательство леммы 1 (Жермен) Доказательство леммы 2 (вспомогательной) Доказательство теоремы Ферма для показателя 4 Примечания к доказательствам Биография Ферма Пьер Ферма жил с 1601 по 1665 год. Был он сыном одного из многочисленных торговцев во Франции, получил юридическое образование и работал сначала адвокатом, а впоследствии стал даже советником парламента. Служебные его обязанности, далёкие по содержанию от математических наук, оставляли ему достаточно досуга, который Ферма и посвящал занятиям математическими исследованиями. Благодаря своим природным способностям и настойчивости, необходимой при работе над вопросами математики, Ферма добился крупных результатов в самых различных её областях. Но не только математикой был он силён: в области физики, например, им сформулирован основной принцип геометрической оптики, известный под названием «Принципа Ферма». Ферма своими работами способствовал развитию новых отраслей в математике: математического анализа, аналитической геометрии (одновременно с Декартом), теории вероятностей. Главным вкладом Ферма в алгебру явилась развитая им теория соединений или, как её ещё называют, комбинаторика. Отдельные задачи теории соединений были решены уже в древности греками и индийцами, но научная постановка этих вопросов возникла лишь в XVII веке в работах Ферма и его современника, знаменитого французского философа, математика и физика Блеза Паскаля. Исходя из основ комбинаторики, эти два учёных и положили начало новой математической науке, называемой теорией вероятностей, получившей в XVIII веке значительную теоретическую базу, при этом она стала получать всё большее распространение и использоваться в различных областях науки и практической деятельности. Прежде всего, она была применима к вопросам страхования, а в дальнейшем область её применения всё расширялась и расширялась. Много внимания Ферма также уделял и вопросу о магических квадратах. Эти квадраты сначала стали известны индийцам и арабам, и уже только в эпоху средних веков они появились в Западной Европе. Различные математики заинтересовались исследованиями их свойств, это содействовало развитию некоторых математических теорий. Ещё Мезириак нашёл способы составления магических квадратов с нечётным числом клеток, а уже Ферма распространил идею составления магических квадратов на пространство, т. е. поставил вопрос о составлении кубов, обладающих свойствами, аналогичными свойствам магических квадратов. Хотя Ферма внёс большой вклад в развитие теории алгебраических чисел, доказательства его доводов почти ни в одном случае найдены не были (доказательство Большой теоремы Ферма для n=4 – исключение, т. к. в рукописях оно было). Некоторые выводы, сделанные Ферма, были и вовсе ошибочными, но теоремы, полные доказательства которых, как утверждал Ферма, у него имелись, все впоследствии были доказаны (основной вклад в доказательство которых внёс Эйлер). Но было и одно исключение – приятное исключение – это Великая теорема Ферма: История Большой теоремы Ферма Большой известностью во всём мире пользуется «Великая теорема Ферма» (она же – «Большая» или «Последняя»). Великой теоремой Ферма называется то заключение, которое было сделано им при чтении изданной Мезириаком «Арифметики» Диофанта. На полях этой книги, против того места, где идёт речь о решении уравнения вида x2 + y2 = z2, Ферма написал: «Между тем, совершенно невозможно разложить полный куб на сумму кубов, четвёртую степень – на сумму четвёртых степеней, вообще какую-нибудь степень – на сумму степеней с тем же показателем. Я нашёл поистине удивительное доказательство этого предположения, но здесь слишком мало места, чтобы его поместить». Это положение Ферма теперь формулируется как теорема в следующем виде: «Уравнение xn + yn = zn не может быть решено в рациональных числах относительно x, y и z при целых значениях показателя n, больших 2» (общеизвестно, что при n=2 такие числа существуют, например, 3, 4, 5 – числа, которые, если являются длинами сторон, образуют знаменитый треугольник Пифагора). Справедливость этой теоремы подтверждается для многих частных случаев (при этом ещё не найдено ни одного опровержения), однако до сих пор она не доказана в общем виде, хотя ей интересовались и её пытались доказать многие крупные математики (в «Истории теории чисел» Диксона прореферировано более трёхсот работ на эту тему). В 1907 году в городе Дармштадте в Германии умер математик Вольфскель, который завещал 100000 марок тому, кто даст полное доказательство теоремы. Немедленно сотни и тысячи людей, движимых одним лишь стремлением к наживе, стали бомбардировать научные общества и журналы своими рукописями, якобы содержащими доказательство теоремы Ферма. Только в Гёттингенское математическое общество за первые три года после объявления завещания Вольфскеля пришло более тысячи «решений». Но премия эта до сих пор никому не выдана за отсутствием настоящего доказательства Большой теоремы Ферма. Элементарного доказательства Великой теоремы Ферма нет ни для одного показателя n ( 4. Случай, когда n = 3, был доказан Эйлером ещё в 1768 году. И тот потребовал ещё много лет, чтобы теория, которой необоснованно пользовался Эйлер при своём доказательстве, была доказана Гауссом. Доказательство теоремы Ферма для случая, когда n = 5, предложили в 1825 году почти одновременно Лежен Дирихле и Лежандр. Своё доказательство Дирихле опубликовал в 1828 году, но оно было очень сложным, и в 1912 году его упростил Племель. Для следующего простого показателя n = 7 теорема Ферма была доказана лишь в 1839 году Ламе. Доказательство Ламе было почти сразу же усовершенствовано Лебегом. В 1847 году Ламе объявил, что ему удалось найти доказательство теоремы Ферма для всех простых показателей n ( 3. Метод Ламе представлял собой весьма далёкое развитие идей Эйлера и основывался на арифметических свойствах чисел. Однако сразу же Лиувилль обнаружил в рассуждениях Ламе серьёзный пробел, чем опровергнул это доказательство. Ламе был вынужден признать свою ошибку. На ЭВМ, пользуясь идеями Куммера и Вандивера доказали справедливость теоремы Ферма для всех простых показателей n < 100000. Доказательство леммы 1 (Жермен) Если произведение двух взаимно простых натуральных чисел является n-ой степенью, то каждый из сомножителей также будет n-ой степенью: ab = cn; НОД(a; b) = 1; a, b ( N Доказать: a = xn; b = yn Доказательство: Если разложить cn на простые множители, то: cn = d1 * … * d1 * d2 * … * d2 * … * dm * … * dm, где каждого множителя по n. Если же разложить на простые множители числа a и b, то какие-то из чисел d1 … dm уйдут к a, какие-то – к b, причём одинаковые уйти и туда, и туда не могут в силу того, что НОД(a; b) = 1, т. е. a есть произведение n-х степеней неких простых чисел, и b также – произведение n-х степеней каких-то чисел, следовательно: a = xn; b = yn. Доказательство леммы 2 (вспомогательной) x2 + y2 = z2 (1) Если (x; y; z) – решение, то (y; x; z) также будет решением, потому что x и y симметричны в данном уравнении. Предположим, что z = 2k, тогда z2 = 4k, если же z = 2k – 1, то z2 = (2k – 1)2 = 4k2 – 4k + 1 = 4(k2 – k) + 1, следовательно, хотя бы одно из чисел x и y чётно, т. к. если бы оба они были нечётными, то x2 + y2 = (2k – 1)2 + (2d – 1)2 = 4k2 – 4k + 1 + 4d2 – 4d + 1 = 4(k2 + d2 – k – d) + 2, чего быть не может, т. к. x2 + y2 = z2. Кроме того ((x; (y; (z) также является решением уравнения, т. к. x2 = (-x)2; y2 = (-y)2; z2 = (-z)2. Из этих замечаний непосредственно следует, что нам достаточно найти лишь состоящие из положительных чисел примитивные решения (x; y; z) уравнения (1), т. е. исключим все следующие решения: ((x; (y; (z), кроме (x; y; z), (y, x, z), для которых x = 2a. Лемма 2: «Любое состоящее из положительных чисел примитивное решение (x, y, z) уравнения (1), для которого x = 2a, выражается формулами: x = 2mn; y = m2 – n2; z = m2 + n2, где n < m, НОД(m; n) = 1, m и n – числа разной чётности». Доказательство: Пусть (x; y; z) – произвольное, состоящее из положительных чисел примитивное решение уравнения (1), где x = 2a. Из уравнения 4a2 + y2 = z2 следует (z – y)(z + y) = 4k2. Чётность чисел z – y и z + y совпадают и произведение их равно 4k2, следовательно, z – y и z + y чётные. Пусть z + y = 2b; z – y = 2c, где b и c положительны, т. к. y < z, исходя из уравнения (1). Каждый общий делитель ( чисел b и c является также общим делителем z = b + c и y = b – c. НОД(y; z) = 1, т. к. (x; y; z) – примитивное решение уравнения (1), следовательно, НОД(b; c) = 1. С другой стороны 4a2 = x2 = z2 – y2 = (z – y)(z + y) = 4bc, т. е. a2 = bc. Следовательно, согласно лемме 1, применённой к случаю, когда n = 2, существуют такие взаимно простые положительные числа разной чётности m и n, что b = m2; c