Выпускная квалификационная работа
''АНАЛОГИИ В КУРСЕ ФИЗИКИ СРЕДНЕЙ ШКОЛЫ''
СОДЕРЖАНИЕ
Введение...................................................................................................................3
ГЛАВА 1. Электромеханические аналогии
§1. Электромагнитные и механические колебания...............................................5
§2. Решение уравнений, описывающих свободные колебания...........................15
§3. Решение физических задач................................................................................18
§4. Изучение волновых процессов .........................................................................25
ГЛАВА 2. Другие виды аналогий в школьном курсе физики
§5.Использование аналогии при изучении транзистора.......................................32
§6. Изучение электрических цепей с использованием аналогии.........................35
§7. Аналогии при изучении постулатов Бора.........................................................45
ГЛАВА 3. Изучение аналогий на факультативах, кружках и спецкурсах.
§8. Волчок и магнит..................................................................................................52
§9. Свет и глаз............................................................................................................62
Заключение.................................................................................................................70
Список литературы....................................................................................................71
Введение.
Аналогия - один из методов научного познания, который широко применяется при изучении физики.
В основе аналогии лежит сравнение. Если обнаруживается, что два или более объектов имеют сходные признаки, то делается вывод и о сходстве некоторых других признаков. Вывод по аналогии может быть как истинным, так и ложным, поэтому он требует экспериментальной проверки.
Значение аналогий при обучении связано с повышением научно-теоретического уровня изложения материала на уроках физики в средней школе, с формированием научного мировоззрения учащихся.
В практике обучение аналогии используется в основном для пояснения уже введенных трудных понятий и закономерностей.
Электромагнитные колебания и волны - темы школьного курса физики, усвоение которых традиционно вызывает большие затруднения у учащихся. Поэтому для облегчения изучения электромагнитных процессов используются электромеханические аналогии, поскольку колебания и волны различной природы подчиняются общим закономерностям.
Аналогии между механическими и электрическими колебательными процессами с успехом используются в современных исследованиях и расчетах. При расчете сложных математических систем часто прибегают к электромеханической аналогии, моделируя механическую систему соответствующей электрической.
Демонстрационный эксперимент при изучении переменного тока вскрывает лишь некоторые основные особенности процессов протекания тока по различным электрическим цепям. Здесь большое значение имеют аналогии, дающие возможность понять ряд явлений в цепях переменного тока, сущность которых трудно разъяснить в средней школе другими средствами. К таким вопросам в первую очередь относятся явления в цепях переменного тока с емкостью и индуктивностью, а также сдвиг фаз между током и напряжением.
Использование метода аналогии при решении задач может идти в двух направлениях:
непосредственное применение этого метода;
отыскание физической системы, которая аналогична данной в условии задачи.
В данной работе будут рассмотрены следующие аналогии, изучаемые в курсе физики средней школы: электромагнитные и механические колебания; решение уравнений, описывающих колебания в пружинном и математическом маятниках; решение физических задач; изучение волновых процессов; изучение электрических цепей с использованием аналогии; использование аналогии при изучении транзистора; аналогии при изучении постулатов Бора; волчок и магнит; свет и глаз.
Таким образом аналогии позволяют учащимся более глубоко понять известные физические явления, понятия и процессы.
ГЛАВА 1 ЭЛЕКТРОМЕХАНИЧЕСКИЕ АНАЛОГИИ.
§ 1 Электромагнитные и механические аналогии.
В теме " Электромагнитные колебания " рассматривается электромагнитный процесс, возникающий при разрядке конденсатора через катушку индуктивности и делается вывод о колебательном характере этого процесса.
Электромагнитные колебания в контуре имеют сходство со свободными механическими колебаниями, например с колебаниями тела, закрепленного на пружине. Сходство относится не к природе самих величин, которые периодически изменяются, а к процессам периодического изменения различных величин.
При механических колебаниях периодически изменяются координата тела x и проекции его скорости EMBED Equation.3 , а при электромагнитных колебаниях меняются заряд конденсатора q и сила тока в цепи i. Одинаковый характер изменения величин (механических и электрических) объясняется тем, что имеется аналогия в условиях, при которых порождаются механические и электромагнитные колебания. Возвращение к положению равновесия тела на пружине вызывается силой упругости F , пропорциональной смещению тела от положения равновесия. Коэффициентом пропорциональности является жесткость пружины k. Разрядка конденсатора (появление тока) обусловлена напряжением U между пластинами конденсатора, которое пропорционально заряду q. Коэффициентом пропорциональности является величина EMBED Equation.3 , обратная емкости, так как EMBED Equation.3 = EMBED Equation.3 q.
Подобно тому как вследствии инертности тело лишь постепенно увеличивает скорость под действием силы и эта скорость после прекращения действия силы не становится сразу равной нулю, электрический ток в катушке за счет явления самоиндукции увеличивается под действием напряжения постепенно и не исчезает сразу, когда это напряжение становится равным нулю. Индуктивность контура L играет туже роль, что и масса тела m в механике. Соответственно кинетической энергии тела EMBED Equation.3 отвечает энергия магнитного поля тока EMBED Equation.3 , а импульсу тела mv отвечает поток магнитной индукции Li .
Зарядке конденсатора от батареи соответствует сообщение телу, прикрепленному к пружине, потенциальной энергии EMBED Equation.3 при смещении тела на расстояние EMBED Equation.3 от положения равновесия (рис. 1,а).
Сравнивая это выражение с энергией конденсатора EMBED Equation.3 , замечаем, что жесткость k пружины играет при механическом колебательном процессе такую же роль, как величина EMBED Equation.3 , обратная емкости, при электромагнитных колебаниях, а начальная координата EMBED Equation.3 соответствует заряду EMBED Equation.3 .
Возникновение в электрической цепи тока i за счет разности потенциалов соответствующих появлению в механической колебательной системе скорости EMBED Equation.3 под действием силы упругости пружины (рис.1,б). Моменту, когда конденсатор разрядится, а сила тока достигнет максимума, соответствует прохождение тела через положение равновесия с максимальной скоростью (рис.1.в). Далее конденсатор начнет перезаряжаться, а тело смещаться влево от положения равновесия (рис.1,г). По прошествии половины периода Т конденсатор полностью перезарядится и сила тока станет равной нулю. Этому состоянию соответствует отклонение тела в крайнее левое положение, когда его скорость равна нулю (рис.1,д).
Рассмотренные выше колебания являются свободными. Здесь не учтено, что в любой реальной механической системе существуют силы трения.
Таким образом, соответствие между механическими и электрическими величинами при колебательных процессах можно представить в виде таблицы 1
Выведем уравнение свободных незатухающих электромагнитных колебаний в контуре и колебаний горизонтального пружинного маятника. Применяя к пружинному маятнику закон сохранения энергии, получим равенство: EMBED Equation.3 + EMBED Equation.3 , где
EMBED Equation.3 , EMBED Equation.3 , тогда имеем
EMBED Equation.3 (1)
Так как
EMBED Equation.3 и EMBED Equation.3 получаем
EMBED Equation.3 EMBED Equation.3=const (2)
Следует заметить, что уравнение (2) так же следует из закона сохранения энергии. В уравнении (2) i=q' - мгновенное значение силы тока, qmax - максимальный заряд на конденсаторе (он не должен вызвать пробоя). Делаем вывод о зависимости силы тока от величины заряда и находим значение максимальной силы тока:
EMBED Equation.3 ; EMBED Equation.3 Откуда
EMBED Equation.3 при q=0.
Как видно формально с точки зрения математики уравнения (1) и (2) являются одинаковыми.
Решаем уравнение (2): производная полной энергии по времени равна нулю, так как энергия постоянна.
Следовательно, равна нулю сумма производных по времени от энергий магнитного и электрического полей.
EMBED Equation.3 или
EMBED Equation.3 (3)
EMBED Equation.3
Физический смысл уравнения (3) состоит в том, что скорость изменения энергии магнитного поля по модулю равна скорости изменения энергии электрического поля; знак “минус” указывает на то, что, когда энергия электрического поля возрастает, энергия магнитного поля убывает (и наоборот). Поэтому полная энергия не меняется.
Вычисляя обе производные получаем:
EMBED Equation.3
EMBED Equation.3
так как EMBED Equation.3 , тогда
EMBED Equation.3 и EMBED Equation.3
получаем
EMBED Equation.3
EMBED Equation.3 (4)
Уравнение (4) является основным уравнением, описывающем процессы в колебательном контуре.
Рассмотрим колебания вертикального пружинного и математического маятников.
EMBED Equation.3 Выведем груз из положения равновесия, растянув пружину на длину Хm (рис.2) и отпустим. (Амплитудное растяжение пружины Xm должно быть таково, чтобы был справедлив закон Гука EMBED Equation.3 и выводимая на его основе формула потенциальной энергии пружины.)
Рис.2
EMBED Equation.3
EMBED Equation.3 Мгновенные значения координаты груза х в процессе колебаний лежат в пределах -xm?x?xm . По закону сохраненья энергии имеем:
EMBED Equation.3 EMBED Equation.3 (5)
где X0=mg/k - статическое растяжение пружины (потенциальную энергию груза в поле силы тяжести отсчитываем от уровня равновесия груза, обозначенного на рис. 2 пунктиром). Учитывая, что EMBED Equation.3 и EMBED Equation.3 , получим уравнение колебаний
EMBED Equation.3
EMBED Equation.3
EMBED Equation.3 EMBED Equation.3 =соnst EMBED Equation.3 (6)
Как видно уравнения колебаний горизонтального и вертикального пружинных маятников одинаковы.
Ускорение свободного падения g, имеющееся в уравнении (5), отсутствует в полученном уравнении колебаний. Следовательно, колебания груза на пружине не зависят от g и одинаковы, например, на Земле и Луне.
Хотя в дифференциальные уравнения (1) и (6) входят разные величины, математически они эквивалентны.
По аналогии с уравнением (4) описывающем процессы в колебательном контуре, запишем уравнение колебания пружинного маятника:
EMBED Equation.3 ; EMBED Equation.3 ; EMBED Equation.3
получим
EMBED Equation.3 , (7)
Отклоним теперь математический маятник длиной l (рис. 3) от положения равновесия на длину дуги sm<<l и отпустим. Мгновенная высота подъема маятника
рис.3
EMBED Equation.3
так как при ?<<1 можно считать EMBED Equation.3 , а s=la. По закону сохранения энергии имеем:
EMBED Equation.3 , где EMBED Equation.3
EMBED Equation.3
или
EMBED Equation.3 =const (8)
По аналогии с формулами (4) и (7) x?q?s; EMBED Equation.3 ; EMBED Equation.3 получаем:
S``= - EMBED Equation.3 (9)
Различие уравнений (1), (6) и (9) состоит только в обозначениях и физическом смысле входящих в них величин.
Если не предполагать sm<<l (соответственно ?m= EMBED Equation.3 <<1 рад.), то получится сложное уравнение, решить которое в рамках школьного курса невозможно. Оно будет описывать колебания, период которых зависит от амплитуды. Строго говоря, период колебаний маятника всегда зависит от ?m, однако при sm<<l рад. этой зависимостью можно пренебречь.
Процессы в колебательном контуре станут понятнее учащимся при рассмотрении преобразований энергий, которые происходят при колебаниях, используя таблицу 2.
§ 2. Решение уравнений, описывающих колебания в пружинном и математическом маятниках.
Найдем решение уравнения:
EMBED Equation.3 (1)
Нельзя считать, что EMBED Equation.3 или EMBED Equation.3 , так как вместо EMBED Equation.3 получилось бы равенство
EMBED Equation.3
Чтобы в выражении второй производной EMBED Equation.3 был множитель EMBED Equation.3 запишем уравнение (1) в виде:
EMBED Equation.3 (2)
Найдем первую и вторую производные:
EMBED Equation.3
EMBED Equation.3 EMBED Equation.3 EMBED Equation.3
Функция (2) есть решение исходного уравнения (1). Функция
EMBED Equation.3 есть также решение исходного уравнения.
Обозначим постоянную величину EMBED Equation.3 , зависящую от свойств системы, через EMBED Equation.3 EMBED Equation.3 : EMBED Equation.3
Тогда решение уравнения (2) можно записать:
EMBED Equation.3 (3)
Тогда уравнение (1), описывающее свободные электромагнитные колебания примет вид:
EMBED Equation.3 (4)
Из курса математики известно, что наименьший период косинуса равен 2?. Следовательно, ?0=2?,
EMBED Equation.3 . Так как EMBED Equation.3 EMBED Equation.3 , тогда период колебаний равен
EMBED Equation.3 - формула Томсона.
Аналогично этим рассуждениям решим уравнение для колебаний вертикального пружинного маятника:
EMBED Equation.3 (5)
Запишем уравнение (5) в виде:
EMBED Equation.3 (6)
Найдем первую и вторую производные:
EMBED Equation.3
EMBED Equation.3
Функция (6) есть решение исходного уравнения. Функция EMBED Equation.3 есть также решение исходного уравнения. Обозначим постоянную величину
EMBED Equation.3 через ?0 получим
EMBED Equation.3 (7)
Тогда уравнение (5) будет иметь вид:
EMBED Equation.3 (8)
Период колебаний для пружинного маятника по аналогии с формулой Томсона
EMBED Equation.3
где EMBED Equation.3 ; EMBED Equation.3 получим
EMBED Equation.3 (9)
Аналогично выше изложенным рассуждениям решим уравнение для колебаний математического маятника:
EMBED Equation.3 (10)
Запишем уравнение (10) в виде:
EMBED Equation.3 (11)
Найдем первую и вторую производные уравнения (11):
EMBED Equation.3
EMBED Equation.3
Функция (11) есть решение уравнения (10). Обозначим постоянную величину EMBED Equation.3 ,зависящую от свойств системы, через ?0 получим:
EMBED Equation.3 (12)
Тогда уравнение (10) примет вид:
EMBED Equation.3 (13)
По аналогии с формулой(8) и формулой Томсона, для математического маятника период колебаний равен:
EMBED Equation.3 ; EMBED Equation.3 ; EMBED Equation.3
EMBED Equation.3 (14)
Уравнения (4), (8) и (13) являются решениями уравнений, описывающих колебания в пружинном и математическом маятникам.
§ 3 Решение физических задач.
Рассмотрим несколько задач, решение которых методом аналогии возможно на уроках и факультативных занятиях в 11 классах (после изучения раздела "Электрические колебания) и при повторении материала.
Задача1. Изобразите механические системы, аналогичные электрическим цепям, схематически изображенными на рис.1,а,б
Решение. Аналогичная механическая система соответствующая рис.1,а,б должна содержать тело массой m и две пружины с разными жестокостями EMBED Equation.3 и EMBED Equation.3
а) Общая емкость системы конденсаторов (рис.1,а) равна
EMBED Equation.3
Используя аналогию механических и электрических величин, найдем что общая жесткость пружин искомой механической системы находится из соотношения
EMBED Equation.3
Это соответствует последовательному соединению двух пружин. Учитывая, что один конденсатор заряжен, искомую механическую систему можно представить в виде одной сжатой пружины жесткость EMBED Equation.3 и одной недеформированной пружины жесткостью EMBED Equation.3 (рис.2,а).
б) Аналогично рассмотрим вторую схему.
Общая емкость системы конденсаторов (рис.1,б) равна
EMBED Equation.3
Используя аналогию механических и электрических величин, найдем что общая жесткость пружин искомой механической системы находится из соотношения
EMBED Equation.3
Это соответствует параллельному соединению двух пружин(рис.2,б).
рис.2.
Задача2На рис.3,а,б изображены колебательные контуры. Придумайте механические аналоги им.
рис.3,а
О т в е т. Аналогичная механическая система соответствующая рис.3,а,б должна содержать два тела массами EMBED Equation.3 и EMBED Equation.3 , и пружину жесткостью k.
а) Общая индуктивность системы при последовательном соединении катушек равна
EMBED Equation.3
Используя аналогию механических и электрических величин найдем, что общая масса
EMBED Equation.3
А это соответствует рис.4,а
Рис. 4.а
б) Аналогично рассматриваем вторую схему.
Общая индуктивность параллельно соединенных катушек находится из соотношения
EMBED Equation.3
Используя аналогию механических и электрических величин, найдем что общая масса катушек равна
EMBED Equation.3
Это соответствует рис.4,б
m2 m1
Задача3. Придумайте механическую систему, которая была бы аналогична электрической цепи, состоящей из конденсатора емкостью С и резистора сопротивлением R (рис. 5). Первоначальный заряд конденсатора равен qм. Ключ К замыкается в некоторый момент времени принимаемый за начальный.
EMBED Word.Picture.8
Рис. 5.
О т в е т. Электрическую цепь, состоящую из емкости и сопротивления, можно представить как предельный случай электрического колебательного контура, в котором индуктивность настолько мала, что ею можно пренебречь.
Поэтому аналогичная механическая система будет представлять собой прикрепленное к пружине (жесткость К) тело с очень малой массой, но с значительным объемом, находящееся в поле действия силы вязкого трения с коэффициентом ß.
Задача4. Придумайте механическую динамическую аналогию электрической цепи, представленной на рис. 6. В начальный момент катушка индуктивностью L и резистор сопротивлением R отключены от источника постоянного тока с ЭДС EMBED Equation.3 .
EMBED Word.Picture.8
Рис. 6.
О т в е т. Аналогичная механическая система состоит из тела, находящегося в поле тяжести Земли и расположенного внутри жидкости с коэффициентом вязкости Р. Если отпустить это тело, то оно падает в жидкости под действием силы тяжести FT= mg.
Задача5. Рассчитайте максимальное значение силы тока в цепи, изображенной на рис.7. До замыкания ключа заряд на конденсаторе EMBED Equation.3 равен q, второй конденсатор не заряжен. Воспользуйтесь электромеханической аналогией.
рис. 7.
Решение.
Здесь происходит превращение потенциальной энергии в кинетическую или в соответствии с аналогией энергия электрического поля конденсатора превращается в энергию магнитного поля катушки.
EMBED Equation.3
так как EMBED Equation.3 и EMBED Equation.3
тогда
EMBED Equation.3 .
Отсюда значение максимальной силы тока равно
EMBED Equation.3
Задача 6. Найти максимальную скорость груза на пружине в вязкой среде при действии на него переменной силы F=10sin10t(H) (рис. 8). Масса - груза 0,1 кг, жесткость пружины 2 Н/м, вязкость среды 1 Н. м/с.
Рис.8
Р е ш е н и е. В связи с тем что такой более сложный процесс, какой представлен в условии этой задачи, в школьном курсе физики не изучается, снова обратимся к аналогии. Аналогичная электрическая система выглядит как колебательный контур, содержащий внешний источник переменного тока (рис. 9).
Рис.9
Из закона Ома для переменного тока (обозначения традиционные) максимальная сила тока
EMBED Equation.3
Установим соответствия характеристик механической и электрической систем: f EMBED Equation.3 U: ß EMBED Equation.3 R :m EMBED Equation.3 L:K EMBED Equation.3 1/C.
Учитывая аналогичность систем, получаем:
EMBED Equation.3 = EMBED Equation.3
При подстановке следующих данных:
F=10Н, EMBED Equation.3 =10с-1, ß=1 Н•м/с, w=0,1кг, K=2 Н/м окончательно получаем vm EMBED Equation.3 1,28 м/с.
Задача 7. Источник с ЭДС EMBED Equation.3 и нулевым внутренним сопротивлением соединен последовательно с катушкой индуктивности L и конденсатором С (рис. 10). В начальный момент времени конденсатор не заряжен. Найти зависимость от времени напряжения на конденсаторе после замыкания ключа.
рис.10.
Решение. Искать нужную зависимость, используя законы электромагнетизма, довольно сложно и не наглядно, поэтому целесообразно использовать механическую аналогию. На рис.11 приведена аналогичная механическая колебательная система. Аналогом источника с ЭДС может служить поле силы тяжести. При выдергивании подставки из-под прикрепленного к пружине груза начинаются его колебания. Он совершает гармоническое колебание около точки Xm, график которого дан на рис. 12. а. Уравнение координаты имеет вид:
xm-x(t)=xm cos ?ot,
или
x(t)=xm (1 - cos ?ot).
Рис. 11
Рис. 12
Аналогичное электрическое колебание (график дан на рис. 12, б) описывается следующими уравнениями:
q (t)=qм (1 – cos ?ot);
qм = EMBED Equation.3 EMBED Equation.3 С, q (t)=C EMBED Equation.3 (1 — cos ?ot) ,
U(t)= EMBED Equation.3 , U(f)= EMBED Equation.3 (1 — cos ?ot).
Здесь ?o = EMBED Equation.3 .
В заключение отметим, что рассмотренные нами аналогии широко используются в научных исследованиях. Интересно, что принцип работы аналого-вычислительной машины основан на «поразительной аналогичности» механического и электрического процессов.
§4.Изучение волновых процессов.
Рассматривая вопроссы излучения и распространения любых волн, следует сформулировать условия, необходимые для образования и излучения волн:
наличие источника колебаний в некоторой точке;
возможность передачи колебаний от данной точке к соседним (роль среды);
наличие достаточной связи источника колебаний с передающей средой.
Рассмотрим следующие волновые процессы: излучения и распространения электромагнитных волн, интерференция света, дифракция света и поляризация света.
Излучение и распространение электромагнитных волн.
При изучении вопросов излучения и распространения электромагнитных волн целесообразным аналогом будут акустические волны, факт распространения которых в окружающем пространстве легко устанавливается. Если взять простейший источник акустических волн (камертон без резонансного ящика), то связь его со средой малая и излучение звуковых волн незначительно. Поставив камертон на резонирующий ящик, замечают, что излучение звука значительно усилилось, так как связь со средой стала большей. Если рядом со звучащим камертоном поставить другой камертон, имеющий ту же частоту, то такой камертон возбуждается. Здесь наблюдают явление резонанса. Камертон, имеющий другую частоту собственных колебаний, не возбудится. Излучение камертона возможно только в среде, обладающей определенными физическими свойствами.
Как известно, излучение энергии замкнутым колебательным контуром незначительно, так как электрическое поле в этом случае локализовано между обкладками конденсатора, а магнитное поле — вокруг катушки. Чтобы подчеркнуть это свойство замкнутого колебательного контура, уместно воспользоваться аналогией с колеблющимся камертоном (без резонансного ящика), излучение которого незначительно. Открытый колебательный контур излучает энергию значительно лучше, так как в этом случае магнитное и электрическое поля совмещены и занимают окружающее контур пространство. Чтобы проиллюстрировать данный факт, уместна аналогия с камертоном на резонансном ящике, хорошо излучающем энергию благодаря связи со средой.
Явление резонанса при звуковых процессах является хорошей аналогией для объяснения приема электромагнитных волн. В антенне приемного устройства возникают колебания всевозможных частот, но приемник «выбирает» из всех колебаний только те, на частоту которых он настроен. Это аналогично возбуждению камертона, имеющего ту же частоту, что и излучающий. При излучении электромагнитных волн возникают возмущения в электромагнитном поле, так же как возникают возмущения в упругой среде вокруг камертона. Природа же распространяющихся при этом волн различна.
2.Интерференция света.
Интерференция света представляет собой сложное явление, объяснение которого требует рассмотрения вопроса о наложении волн, об условиях усиления и ослабления колебаний и т. д. Здесь применяют аналогию с поверхностными волнами на воде.
Вначале, возбудив в волновой ванне две волны, наблюдают результат их наложения и объясняют полученную картину(рис.1).
О1 О2 М D1 D2 l ?D
Рис.1.
В любой точке М на поверхности воды будут складываться колебания, вызванные двумя волнами (от источников O1 и О2). Амплитуды колебаний вызванных в т.М будут отличаться друг от друга, так как волны проходят различные пути D1 и D2 .
Но если расстояние l между источниками много меньше этих путей (l <<D1и l<<D2), то обе амплитуды можно считать одинаковыми. Результат сложения волн в точке М зависит от разности фаз между ними. Пройдя различные расстояния, волны имеют разность хода ?D=D2-D1
Если разность хода равна длине волны ?, то вторая волна запаздывает по сравнению с первой ровно на один период. Следовательно, в этом случае гребни (впадины) обеих волн совпадают.
Сложение волн в зависимости от разности их хода объясняют на специально вычерченных графиках, показывая, как складываются колебания при условии совпадения фаз и в случае когда колебания происходят в противофазе.
Зависимость от времени смещения х1 и х2 вызванных двумя волнами при ?D=?. Разность фаз колебаний равна нулю, так как период синуса равен 2? (рис.2).
x1 x2 x 0 x t
Рис. 2
В результате сложения этих колебаний возникает результирующее колебание с удвоенной амплитудой. Колебания результирующего смещения x показаны пунктиром. То же самое будет происходить, если на отрезке ?D укладывается не одна, а любое целое число длин волн:
?D=k?, k=0, 1, 2…. – условие максимума.
Пусть теперь на отрезке ?D укладывается половина длины волны (рис.3).
t x1 x2 x 0 x
Рис.3.
Вторая половина отстает от первой на половину периода. Разность фаз оказывается равной ?, то есть колебания будут происходить в противофазе. В результате сложения этих колебаний амплитуда результирующего колебания равна нулю, то есть в рассматриваемой точке колебаний нет. Тоже самое происходит если на отрезке укладывается любое нечетное число полуволн.
?D=( 2k+1 )?/2, k=0,1,2... - условие минимума.
Аналогично интерференции поверхностных водяных волн происходит и интерференция световых волн, но осуществить это явление значительно сложнее. Необходимо учитывать, что условия излучения и природа этих волн различны, а общее между ними только в периодичности процессов. Перед демонстрацией опытов по интерференции света следует рассмотреть вопрос о когерентных источниках волн. Когерентность поверхностных волн на воде легко осуществляют в волновой ванне с помощью двух связанных между собой вибраторов.
Два обычных источника света не являются когерентными. Учащимся необходимо пояснить, что для получения устойчивой картины интерференции света надо использовать специальные установки, в которых заставляют интерферировать два пучка одной и той же волны, излучаемые одним источником, но идущие к точке наблюдения различными путями.
После этого демонстрируют интерференцию света и по аналогии объясняют интерференционную картину. Проводя аналогию между световыми и поверхностными водяными волнами, показывают сходство и различие явлений различной природы.
3.Дифракция света.
Явление дифракции света рассматривают по аналогии с дифракцией поверхностных волн на воде. Для этой цели в волновой ванне показывают явление дифракции волн (отклонение волн от прямолинейного распространения), ставя на пути волн препятствия, размеры которых соизмеримы с длиной волны. Получают дифракцию на препятствии и на щели.
Когда явление дифракции с помощью поверхностных водяных волн разъяснено, переходят к дифракции света. Но перед демонстрацией соответствующих опытов останавливаются на различии дифракции света и дифракции длинных поверхностных волн. Так как поверхностные водяные волны иллюстрируют огибание волнами препятствий, без последующего распределения максимумов и минимумов, то есть поверхностные волны подчиняются принципу Гюйгенса – Френеля. В случае световых волн имеет место не только огибание препятствий, но и сложение волн. Поэтому, наблюдая дифракцию света, видят проявление максимумов и минимумов освещенности, что является результатом интерференции (наложении) волн.
При рассмотрении дифракции света можно использовать таблицу 3, в которой сопоставляются дифракционные картины от освещенной щели и в волновой ванне при различной ширине щели.
Таблица 3.
4.Поляризация света.
Как известно, электромагнитные волны поперечны. Так как свет имеет электромагнитную природу, то световые волны также поперечны. Чтобы разобраться в опытах по поляризации света необходимо уяснить понятие плоско поляризованного света и действие поляризатора, и анализатора.
Плоскополяризованными волнами называют поперечные волны, колебания в которых происходят в одной плоскости вдоль прямой, перпендикулярной направлению распространения.
Такими являются волны на шнуре, поэтому свойства плоскополяризованных волн можно наглядно объяснить.
Для этой цели берут щель между двумя досками. Если эту щель расположить вертикально, то волны бегущие по шнуру, раскачиваемому в вертикальной плоскости, свободно пройдут через щель (рисю.4,а). Если же щель повернуть на 90 , то волны через щель не пройдут и будут полностью погашены (рис.4,б).
Рис.4 а) б)
Естественный свет не поляризован, но его поляризацию можно осуществить с помощью приборов – поляризаторов, действие которых аналогично действию щели в опыте со шнуром. В поляризатор пропускают лишь лучи с определенной плоскостью колебаний светового вектора Е. Обнаруживают поляризацию света с помощью анализаторов, действие которых аналогично действию указанной щели, плоскость которых параллельна щели.
Применение этой аналогии делает явление поляризации света понятным и доступным.