Красноярск 2001 г.
Вопросы контрольной работы.
Причины повышенного содержания токсичных веществ в отработавших газах автомобиля.
Нейтрализация токсичности отработавших газов автомобиля.
Нормирование шума автомобилей.
1. ПРИЧИНЫ ПОВЫШЕННОГО СОДЕРЖАНИЯ ТОКСИЧНЫХ ВЕЩЕСТВ В ОТРАБОТАВШИХ ГАЗАХ АВТОМОБИЛЕЙ.
Повышенный, выброс токсичных веществ на единицу транспортной работы или перевозку одного пассажира связан с нарушением оптимальных характеристик автомобилей и несовершенством системы управления транспортным процессом. Поэтому удельная величина выброса токсичных веществ при одних и тех же условиях эксплуатации изменяется в широких пределах.
Основными причинами повышенного содержания токсичных веществ в ОГ эксплуатирующихся автомобилей являются: нарушение состава горючей смеси на основных эксплуатационных режимах; ухудшение процесса воспламенения горючей смеси
Нарушение состава горючей смеси связано с изменением стабильности регулировочных характеристик двигателя и его систем. Выбросы СОх в ОГ достигают максимального значения при а=1.1 и уменьшаются при увеличении и уменьшении указанной величины. Выброс NOx уменьшается, с увеличением запаздывания зажигания и достигает максимума при наиболее богатой горючей смеси. При а=0,9 NOx снижается почти на 35—45% при запаздывании угла опережения на 18—20°, однако при этом удельный расход топлива возрастает до 12%. Содержание СН в ОГ снижают также путем уменьшения угла опережения зажигания
Методы воздействия на состав ОГ автомобильных двигателей, предусматривают: улучшение качества протекания процесса и полноты сгорания топлива в цилиндрах двигателя; изменение состава ОГ в выпускной системе двигателя; применение указанных методов одновременно.
Уменьшение содержания токсичных веществ в ОГ путем оптимизации процесса сгорания является наиболее перспективным методом, так как продукты неполного сгорания СО и СН легче нейтрализуются на стадии их образования, чем в выпускной системе с применением пока еще ненадежно работающих и дорогостоящих нейтрализаторов.
Загрязнение атмосферы городов зависит непосредственно от интенсивности автомобильного движения, организации дорожного движения, степени мастерства вождения, технического состояния транспортных средств и планово-предупредительной системы ТО и ТР автомобилей, а также применения антитоксичных устройств.
Анализ транспортного процесса показывает, что при работе двигателя на холостом ходу степень концентрации СО превышает в 2,1, а на режимах принудительного холостого хода в 1,6—1,9 раза установившиеся режимы. Вследствие этого в центральной части города степень концентрации в атмосфере СО в 3—4 раза больше, чем на скоростных автомобильных магистралях, что приводит к увеличению выброса NOx в 1,45 раза. При равномерном движении автомобилей СН снижается в 1,7—1,85 раза по сравнению с неустановившимися режимами движения автомобилей.
Неправильное управление водителем приводит к увеличению токсичных выбросов СО и СН на 25—30% и N0x на 10—15%.
Применение антитоксичных устройств и обедненной регулировки карбюратора позволяет уменьшить выброс токсичных веществ на единицу пути (г/км), в том числе СО в 2,1, СН в 1,5 и NОх в2,6 раза (табл. 1).
Проблема разработки индустриальных методов и прогрессивной технологии в области технической эксплуатации автомобильного транспорта предусматривает решение широкого круга научно-технических и организационно-технологических вопросов, включающих: повышение профессионального уровня водительскoгo и технического персонала, ИТР; разработку прогрессивных
Таблица 1
Удельный выброс токсичных веществ автомобилем малого класса с карбюраторным двигателем.
технологических методов контроля и регулировки автомобилей, со здание необходимой для этих целей контрольно-измерительной аппаратуры, оборудования и приборов; организацию постов контроля токсичности ОГ; нормирование контроля токсичности ОГ
Токсичность ОГ автомобилей оценивают по ездовым циклам, характеризующим движение автомобилей в реальных условиях эксплуатации. Однако реализация их в условиях АТП в ближайшие годы затрудняется из-за отсутствия необходимого оборудования и приборов, высокой трудоемкости и большой продолжительности проведения испытаний. Кроме того, испытания даже подготовленного автомобиля отличаются нестабильностью (до 40% и выше) результатов определения массы токсичных веществ в ОГ. Поэтому при проведении контрольных испытаний автомобиль особенно тщательно подготавливают к работе и правильному выполнению операций ездового цикла.
Основные показатели ездового цикла, влияющие на стабильность выброса токсичных веществ, имеют погрешность измерения, %:
Автомобиль ........ . . . 18
Водитель . ... . . . 12
Окружающие условия . ... . . 8
Топливо . . ... .. . . . . . . 5
Динамометр .............. .... . . ...... 3
Газоаналитическое оборудование .... 2
Для автомобилей, находящихся в эксплуатации, нестабильность результатов определения токсичных веществ достигает ещё больших величин и в отдельных случаях отличается в 1,5—2 раза,
Получение однозначных результатов требует строгого соблюдения методики проведения испытаний и высокой точности измерения выброса токсичных веществ в ОГ. Точность измерения объёмного содержания токсичных веществ в ОГ является наиболее ответственным моментом при оценке токсичности ОГ. Погрешность измерения СО на величину 0,1—0,2% по объему приводит к ошибке 15—20% при определении массы указанного компонента, выбрасываемого за ездовой цикл. Поэтому аппаратура для проведения газового анализа должна обладать высокой точностью быстротой и непрерывностью проведения газового анализа,
Принимая во внимание перечисленные особенности ездовых циклов, последние применяются в настоящее время при испытаниях в научных исследованиях и на заводах автомобильной промышленности.
Упрощенный метод оценки токсичности ОГ автомобилей, находящихся в эксплуатации, для АТП основан на получении эквивалентных результатов при испытании автомобиля по ездовому циклу и на отдельных наиболее характерных эксплуатационных режимах его работы.
Для решения проблемы рациональной организации движения, в том числе безостановочного движения автомобилей, предусматривают строительство пешеходных переходов и туннелей.
Таблица 2
Влияние режима дорожного движения на выброс токсичных веществ автомобилем среднего класса с карбюраторным двигателем
Наличие средств регулирования на перегоне длиной 1 км неизбежно увеличивает выброс токсичных веществ с ОГ (табл. 2)
Выброс токсичных веществ автомобиля в различных условиях эксплуатации изменяется в зависимости от скорости движения автомобиля. В городских условиях эксплуатации при невысоких скоростях движения выброс СО в 1,46—2,2 и СН в 2,1—2,8 раза выше по сравнению со свободным движением. При повышении скоростей эта разница заметно уменьшается (рис. 1).
При увеличении скорости движения грузового автомобиля (средней грузоподъемности с карбюраторным двигателем) с 20 до 60 км/ч количество токсичных веществ уменьшается: СО с 83 до 27 г/км, а СН с 10 до 5,8 г/км.
Рис.1. Зависимость выброса токсичных веществ от скорости
движения автомобиля ЗИЛ-130.
?P - разрежение во впускном трубопроводе; qCO— выброс СО, г/кг; qNOx — выброс N0x. г/кг;
qCH-выброс СН, г/км
2. НЕЙТРАЛИЗАЦИИ ТОКСИЧНОСТИ ОТРАБОТАВШИХ ГАЗОВ АВТОМОБИЛЯ.
Для автомобилей с бензиновыми двигателями характерна низкая концентрация свободного кислорода в ОГ при работе с коэффициентом избытка воздуха а EMBED Equation.3 1. Именно режимы с а < 1 дают основную долю массовых выбросов продуктов неполного сгорания топлива в испытательном цикле.
Для эффективной нейтрализации СО и CnHm значение суммарного коэффициента избытка воздуха в нейтрализаторе а? =(Gв+Gвдоп)/14.9Gт должно бьпь не менее чем 1,05, что достигается подачей в систему выпуска перед нейтрализатором дополнительного воздуха (gbв доп) Одним из наиболее распространенных типов устройств, обеспечивающих подачу дополнительного воздуха, является нагнетатель ротационного типа с приводом от коленчатого вала. В автомобиле ГАЗ-24 с карбюратором, выполненным с предельными отклонениями в сторону обогащения смеси, производительность нагнетателя, равная 60 м3/ч, обеспечивает условия для очистки ОГ по окиси углерода на 90—95%, по углеводородам на 70—85%. Система нейтрализации ОГ (СНОГ) в составе каталитического палладиевого нейтрализатора и ротационного нагнетателя обеспечивает выполнение самых жестких норм на выбросы окиси углерода и углеводородов
На двигателях, имеющих настроенную систему выпуска с индивидуальными выпускными патрубками на каждый цилиндр, можно применять бескомпрессорную подачу дополнительного воздуха с помощью малоинерционных обратных клапанов (пульсаров) Пульсары (рис. 3), устанавливаемые на выпускном трубопроводе двигателя, срабатывают от импульсов разрежения, возникающих в пульсирующем потоке ОГ двигателя за выпускными клапанами. Лепестковый клапан пульсара открывается в момент разрежения в потоке ОГ и пропускает в коллектор воздух, а при прохождении волны повышенного давления запирается. Следует отметить, что производительность пульсаров мало зависит от противодавления в системе выпуска, что немаловажно при установке нейтрализаторов последовательно со стандартным глушителем шума выпуска. Установка пульсаров практически не влияет на топливно-скоростные характеристики автомобиля.
Рис. 3 Схема пульсара.
1 — перфорированная пластина, 2 — эластичная мембрана, 3—упор обтекатель
Нейтрализаторы бензиновых двигателей работают в диапазоне температур ОГ от 120°С на холостом ходу, до 600 °С на форсированных режимах. Каждый процент повышения объемных концентрации СО или СnHm в ОГ повышает температуру реакции на катализаторе примерно на 100°С. Верхний диапазон температур в реакторе при мощностном обогащении смеси может достигать 800 900 °С, а при возникновении неисправностей в системе питания и зажигания — 1000 1100°С. Это аварийный режим, который может привести к спеканию катализатора, прогару реактора и корпуса нейтрализатора.
Для прекращения подачи дополнительного воздуха в реактор на аварийных по температуре режимах, а также на принудительном холостом ходу во избежание возникновения «хлопков» в нейтрализаторе применяется система контроля и автоматического управления. Она включает в себя датчик температуры (термопару), установленный в реакторе, электронный блок управления, трехходовой электромагнитный клапан и клапан отсечки воздуха. Электронный блок подает управляющий сигнал на трехходовой клапан при достижении определенного порога температур (около 850 °С). Клапан срабатывает также от максимального разрежения во впускном трубопроводе двигателя при его работе на принудительном холостом ходу. В обоих случаях он, воздействуя на клапан отсечки воздуха, предотвращает подачу воздуха в нейтрализатор. Такая система применяется с любым типом воздухоподающих устройств — нагнетателем, эжектором или пульсарами.
Электронный блок управляет сигнальной лампочкой на щитке приборов водителя - в кабине автомобиля. В диапазоне температур 300—850 °С лампочка не горит — нейтрализатор работает нормально При температуре ниже 300 °С лампочка загорается, а при температуре выше 850 °С горит прерывисто В первом случае –она сигнализирует о том, что нейтрализатор не выходит на активный режим из-за отсутствия подачи воздуха или потери активности катализатора, во втором — о возникновении неисправностей в двигателе. В любом случае необходимо прекратить эксплуатацию СНОГ до выяснения и устранения неисправностей.
Токсичность отработавших газов и способы её снижения у современных автомобилей.
Экологические требования к автомобилю и его двигателю являются в настоящее время приоритетными. Экологическая чистота выхлопа закладывается в конструкцию двигателя и автомобиля в целом еще при проектировании. Далее в эксплуатации характеристики токсичности должны оставаться стабильными. Регулировка токсичности у двигателей современных автомобилей в большинстве случаев или не требуется или сильно ограничена. В то же время у двигателей автомобилей прошлых лет выпуска, особенно с карбюраторами, токсичность выхлопа напрямую связана с техническим состоянием системы питания и зажигания и их регулировкой. Поэтому в настоящее время ремонт двигателя, какой бы сложный он ни был, не может считаться квалифицированным и качественным, если токсичность выхлопа двигателя после ремонта превышает установленные допустимые пределы.
Основная доля вредных веществ, содержащихся в отработавших газах двигателей и загрязняющих окружающую среду, состоит из окиси углерода СО, окислов азота NOx, углеводородов CnHm (или просто СН). а также углерода С (сажи) у дизелей. Из перечисленных веществ СО, СН и С являются продуктами неполного сгорания топлива. Количество NOx в выхлопных газах связано, в основном, с высокой температурой сгорания. Окислы азота образуются в двигателе при взаимодействии кислорода и азота, содержащихся в воздухе. Чем выше температура сгорания, тем больше образуется NOx. На температуру сгорания влияют конструктивные факторы (например, степень сжатия) и режим работы двигателя (состав смеси, нагрузка). У бензинового двигателя наибольшее влияние на образование вредных веществ оказывает состав смеси. При а = 1.0-1.10 концентрация NOx в выхлопных газах максимальна, а выбросы СО и СН близки к минимальным (рис.4).
Рис. 4. Состав отработавших газов бензинового двигателя в зависимости от состава топливовоздушной смеси:
а — без нейтрализатора б — с трехкомпонентным нейтрализатором
Уменьшение количества и изменение качественного состава вредных веществ, выбрасываемых в окружающую среду с отработавшими газами, достигается целым комплексом мероприятий. Среди них следует отметить ряд конструктивных разработок - специальные конструкции камер сгорания для работы на бедных смесях, в том числе с различными типами форкамер, рециркуляция отработавших газов, т.е. подача их части на вход в двигатель, системы регулирования фаз газораспределения, уменьшающие перекрытие клапанов на пониженных режимах и т.д. Однако даже при использовании в конструкции двигателей всех самых передовых решений удовлетворить нормам токсичности, установленным, например, в США, Японии и странах Европы, не удается. Вследствие этого современные автомобили с бензиновыми двигателями снабжаются каталитическими нейтрализаторами.
Нейтрализатор состоит из носителя, заключенного в корпус. Носитель представляет собой керамический материал (сотовой конструкции или в виде шариков), покрытый тонким слоем катализатора из благородных металлов, например, платины, палладия, родия. При температуре поверхности катализатора свыше 250-300°С содержащиеся в отработавших газах окислы углерода СО эффективно окисляются, а их концентрация в выхлопных газах снижается во много раз. Окисление углеводородов СН происходит при более высокой температуре (400°C). Окисление СО и СН происходит в присутствии свободного кислорода воздуха, небольшое количество которого образуется в результате сгорания:
2СО + О2 -> 2С02
СmНn + (m + n/4)O2 -> mCO2 + (n/2)Н2О
Такие реакции могут происходить в широком диапазоне изменения состава смеси - необходимо только, чтобы отработавшие газы имели коэффициент, а более 1,0, что достигается работой двигателя на обедненной смеси или подачей в систему выпуска дополнительного воздуха.
Подобные нейтрализаторы получили широкое распространение на автомобилях с начала 80-х годов, в том числе, с карбюраторной системой подачи топлива. Однако последовательное ужесточение норм токсичности потребовало создания нейтрализаторов, снижающих не только концентрацию
Рис. 6. Схемы соединения элементов конструкции
а—жесткие; б—шарнирные, в, г — с виброзадерживающей массой, г—с повышенной жесткостью; б—с ребрами жесткости
Под препятствием и его виброизолирующими свойствами имеют в виду местное скачкообразное изменение массы, которое может быть вызвано или простым логическим изменением конструкции или специальным размещением виброзадерживающей массы в конструкции, к которой можно отнести ребра жесткости.
Широкое применение виброзадерживающих масс в конструкции автомобиля сдерживается повышенными расходами металла. Опыт использования виброзадерживающих масс в смежных областях техники (судостроение, тракторостроение) показывает, что их эффективность тем выше, чем больше масса, приходящаяся на единицу длины соединения.
Ребра жесткости также обеспечивают эффект задерживания энергии, однако в очень узком диапазоне частот (ребра жесткости обладают ярко выраженной дискретностью действия).
Вибропоглощение в колебательных системах частично происходит вследствие потерь, которые прежде всего принято характеризовать с помощью коэффициента потерь энергии.
Обычно на резонансе системы величина колебательного смещения обратно пропорциональна коэффициенту потерь. Вне резонанса эти величины мало зависят одна от другой. Конструкция будет обладать большими вибропоглощающими свойствами, если для ее изготовления использовать материал с большим внутренним трением или применять специальные покрытия, обладающие более высоким коэффициентом потерь.
Часто используют вибропоглощающие конструкции типа «сэндвич»— несколько несущих и вибропоглощающих слоев. В действительных конструкциях при нанесении вибропоглощающих покрытий или при установке иных вибропоглотителей и антивибрационных устройств обычно меняется не величина Е, а только EMBED Equation.3 . Поэтому общий эффект вибропоглощения данной конструкции принято оценивать величиной ВП= EMBED Equation.3 , где EMBED Equation.3 и EMBED Equation.3 —коэффициенты потерь до и после нанесения вибропоглощающего покрытия или установки антивибрационного устройства.
Звукоизоляция (ЗИ) и звукопоглощение (ЗП). Под звукоизоляцией понимается снижение звука (шума), поступающего к приемнику, вследствие отражения от препятствий на пути передачи. Звукоизолирующий эффект возникает всегда при прохождении звуковой волны через границу раздела двух разных сред. Чем больше энергия отраженных волн, тем меньше энергия прошедших и, следовательно, тем больше звукоизолирующая способность границы раздела сред. Чем большая часть звуковой энергии поглощается преградой, тем больше ее звукопоглощающая способность.
При изоляции звука и вибрации не происходит необратимого рассеяния энергии колебательного движения упругой среды и превращения ее в теплоту. В существующих конструкциях всегда необходимо виброзвукоизолирующие конструкции дополнять виброзвукопоглощающими устройствами для перевода механической энергии в тепловую. ВИ и ЗИ неэффективны при отсутствии ВП и ЗП. Этот вывод, пожалуй, однозначен применительно к большинству технических задач. Однако дополнительного анализа требуют явления, происходящие в конструкции автомобиля и связанные с изоляцией крупных панелей кузова или самого кузова, которые могут быть хорошими излучателями звуковой энергии, при относительно небольших по размерам источниках энергии колебательного движения. В таких случаях ВИ и ЗИ в чистом виде могут дать существенный положительный эффект. Для обозначения всей совокупности мероприятий с использованием средств ВИ и ЗИ, а также ВП и ЗП применяют понятие «шумоглушение».
Список использованной литературы.
Жигалин О.И. , Лупачёв П.Д. «Снижение токсичности в автомобильных двигателях».
Малов Р.В. и др. «Автомобильный транспорт и защита окружающей среды».
Луканин В.Н, и др. «Снижение шума автомобилей».
Фоменко А.Я. «Снижение автотранспортного шума в городах».
Особенности технического устройства двигателей автомобилей «TOYOTA», и их характеристики.