8. ПОЯНТИЕ О СТАТИСТИЧЕСКОМ ГРАФИКЕ.
ЭЛЕМЕНТЫ СТАТИСТИЧЕСКОГО ГРАФИКА.
Современную науку невозможно представить без применения графиков. Они стали средством научного обобщения.
Выразительность, доходчивость лаконичность, универсальность, обозримость графических изображений сделали их незаменимыми в исследовательской работе и в международных сравнениях и сопоставлениях социально – экономических явлений.
Впервые о технике составления статистических графиков упоминается в работе английского экономиста У. Плейфейра «Коммерческий и политический атлас», опубликованной в 1786 г. и положившей начало развитию приемов графического изображения статистических данных.
Трактовка графического метода как особой знаковой системы – искусственного знакового языка – связана с развитием семиотики, науки о знаках и знаковых системах.
Знак в семиотике служит символическим выражением некоторых явлений, свойств или отношений.
Существующие в семиотике знаковые системы принято разделять на неязыковые и языковые.
Неязыковые знаковые системы дают представление о явлениях окружающего нас мира (например, шкала измерительного прибора, высота столбика ртути в термометре и т.д.).
Языковые знаковые системы выполняют сигнальные функции, а также задачи сопоставления совокупностей явлений и их анализа. Характерно, что в этих системах сочетание знаков приобретает смысл только тогда, когда их объединение производится по определенным правилам.
В языковых знаковых системах различают естественные и искусственные системы знаков, или языков.
С точки зрения семиотики человеческая речь, выраженная знаками – буквами, составляет естественный язык.
Искусственные языковые системы используются в различных областях жизни и техники. К ним относятся системы математических, химических знаков, алгоритмические языки, графики и др.
Не исключая естественного языка, искусственные, или символические языки упрощают изложение специальных вопросов определенной области знаний.
Таким образом, статистический график – это чертеж, на котором статистические совокупности, характеризуемые определенными показателями, описываются с помощью условных геометрических образов или знаков. Представление данных таблиц в виде графика производит более сильное впечатление, чем цифры, позволяет лучше осмыслить результаты статистического наблюдения, правильно их истолковывать, значительно облегчает понимание статистического материала, делает его наглядным и доступным. Это, однако, вовсе не означает, что графики имеют лишь иллюстративное значение. Они дают новое знание о предмете исследования, являясь методом обобщения исходной информации.
Значение графического метода в анализе и обобщении данных велико. Графическое изображение прежде всего позволяет осуществить контроль достоверности статистических показателей, так как, представленные на графике, они более ярко показывают имеющиеся неточности, связанные либо с наличием ошибок наблюдения, либо с сущностью изучаемого явления. С помощью графического изображения возможны изучение закономерностей развития явления, установление существующих взаимосвязей. Простое сопоставление данных не всегда дает возможность уловить наличие причинных зависимостей, в то же время их графическое изображение способствует выявлению причинных связей, в особенности в случае установления первоначальных гипотез, подлежащих затем дальнейшей разработке. Графики также широко используются для изучения структуры явлений, их изменения во времени и размещения в пространстве. В них более выразительно проявляются сравнительные характеристики и отчетливо виды основные тенденции развития и взаимосвязи, присущие изучаемому явлению или процессу.
При построении графического изображения следует соблюдать ряд требований. Прежде всего график должен быть достаточно наглядным, так как весь смысл графического изображения как метода анализа в ом и состоит, чтобы наглядно изобразить статистические показатели. Кроме того, график должен быть выразительным, доходчивым и понятным. Для выполнения вышеперечисленных требований каждый график должен включать ряд основных элементов: графический образ; поле графика; пространственные ориентиры; масштабные ориентиры; эксплуатацию графика.
Рассмотрим подробнее каждый из указанных элементов. Графический образ (основа графика) – это геометрические знаки, т.е. совокупность точек, линий, фигур, с помощью которых изображаются статистические показатели. Важно правильно выбрать графический образ, который должен соответствовать цели графика и способствовать наибольшей выразительности изображаемых статистических данных. Графическими являются лишь те образы, в которых свойства геометрических знаков – фигура, размер линий, расположение частей – имеют существенное значение для выражения содержания изображаемых статистических величин, причем каждому изменению выражаемого содержания соответствует изменение графического образа.
Поле графика – это часть плоскости, где расположены графические образы. Поле графика имеет определенные размеры, которые зависят от его назначения.
Пространственные ориентиры графика задаются в виде системы координатных сеток. Система координат необходима для размещения геометрических знаков в поле графика. Наиболее распространенной является система прямоугольных координат (рис. 1).
Для построения статистических графиков используется обычно только первый изредка первый и четвертый квадраты. В практике графического изображения применяются также полярные координаты. Они необходимы для наглядного изображения циклического движения во времени. В полярной системе координат (рис.1) один из лучей, обычно правый горизонтальный, применяется за ось координат, относительно которой определяется угол луча. Второй координатой считается ее расстояние от центра сетки, называемое радиусом. В радиальных графиках лучи обозначают моменты времени, а окружности – величины изучаемого явления. На статистических



Рис. 1. Полярная система координат
картах пространственные ориентиры задаются контурной сеткой (контуры рек, береговая линия морей и океанов, границы государств) и определяют те территории, к которым относятся статистические величины.
Масштабные ориентиры статистического графика определяются масштабом и системой масштабных шкал. Масштаб статистического графика – это мера перевода числовой величины в графическую.
Масштабной шкалой называется линия, отдельные точки которой могут быть прочитаны как определенные числа. Шкала имеет большое значение в графе и включает три элемента: линию (или носитель шкалы), определенное число помеченных черточками точек, которые расположены на носителе шкалы в определенном порядке, цифровое обозначение чисел, соответствующих отдельным помеченным точкам. Как правило, цифровым обозначением снабжаются не все помеченные точки, а лишь некоторые из них, расположенные в определенным порядке. По правилам числовое значение необходимо помещать строго против соответствующих точек, а не между ними (рис. 2).
5 10 15 20 25

Графические интервалы
Длина шкалы
Рис. 2. Числовые интервалы
Носитель шкалы может представлять собой как прямую, так и кривую линии. Поэтому различают шкалы прямолинейные (например, миллиметровая линейка) и криволинейные – дуговые и круговые (циферблат часов).
Графические и числовые интервалы бывают равными и неравными. Если на все протяжении шкалы равным графическим интервалом соответствуют равные числовые, такая шкала называется равномерной. Когда же равным числовым интервалам соответствуют неравные графические интервалы и наоборот, шкала называется неравномерной.
Масштабом равномерной шкалы называется длина отрезка (графический интервал), принятого за единицу и измеренного в каких – либо мерах. Чем меньше масштаб (рис. 3), тем гуще располагаются на шкале точки, имеющие одно и то же значение. Построить шкалу – это значит на заданном носителе шкалы разместить точки и обозначить их соответствующими числами согласно условиям задачи.
0 1 Масштаб 50 мм
0 1 2 3 4 5 Масштаб 10 мм
0 10 20 30 40 50 Масштаб 1 мм
0 100 200 300 400 500 Масштаб 0,1 мм
Рис. 3. Масштабы
Как правило, масштаб определяется примерной прикидкой возможной длины шкалы и ее пределов. Например, на поле в 20 клеток надо построить шкалу от 0 до 850. Так как не делится удобно на 20, то округляем число 850 до ближайшего удобного числа, в данном случае 1000 (1000 : 20 = 50), т.е. в оной клетке 50, в других клетках 100; следовательно, масштаб – 100 в двух клетках.
Из неравномерных наибольшее распространение имеет логарифмическая шкала. Методика ее построения несколько иная, так как на этой шкале отрезки пропорциональны не изображаемым величинам, а их логарифмами. Так, при основании 10 lg1 = 0; lg = 0 = 1; lg100 = 2 и т.д. (рис. 4).
0 0,5 1,0
0 1 2 3
0 10 100 1000 Числа
0 1 2 3 Логарифмы чисел

Рис. 4.
Последний элемент графика – экспликация. Каждый график должен иметь словесное описание его содержания. Оно включает его содержание; подписи вдоль масштабных шкал и пояснения к отдельным частям графика.