5. Статические характеристики биполярного транзистора.
Схема с общей базой
В транзисторах в качестве одной из независимых переменных обычно выбирают ток эмиттера, легче поддающийся регулированию, чем напряжение. Из характеристик наибольшее распространение получили входные и выходные характеристики транзистора.
Входные характеристики. Входные характеристики транзисторов в схеме с общей базой EMBED Equation.3 при EMBED Equation.3 определяются зависимостью (5.1):
EMBED Equation.3 (5.1)
При большом обратном напряжении коллектора ( EMBED Equation.3 ) ток мало зависит от коллекторного напряжения. На рис. 5-1,а показаны реальные входные характеристики германиевого транзистора. Они соответствуют теоретической зависимости (5.1), подтверждается и вывод о слабом влиянии коллекторного напряжения на ток эмиттера.

Рис 5-1
Начальная область входных характеристик, построенная в соответствии с теоретической зависимостью (5.1), показана на рис. 5-1, а крупным масштабом (в окружности). Отмечены токи I11 и I12, а также эмиттерный ток закрытого транзистора
EMBED Equation.3 (5.2)
протекающий в его цепи при обратных напряжениях эмиттера и коллектора. Как следует из соотношения (5.1), ток эмиттера равен нулю при напряжении эмиттера
EMBED Equation.3 (5.3)
Такое же напряжение устанавливается на эмиттере, если он изолирован от других электродов.
Реальные характеристики транзистора в начальной области несколько отличаются от теоретических. Обратный ток эмиттера при короткозамкнутом коллекторе, обозначаемый EMBED Equation.3 , отличается от тока экстракции I11 наличием еще двух составляющих: термотока EMBED Equation.3 и тока поверхностной проводимости EMBED Equation.3 :
EMBED Equation.3 (5.4)
Обратный ток эмиттера при обратном напряжении коллектора
EMBED Equation.3 (5.5)
Входные характеристики кремниевого транзистора показаны на pиc. 5-1,б. Они смещены от нуля в сторону прямых напряжений; как и у кремниевого диода, смещение равно 0,6—0,7 В. По отношению к входным характеристикам германиевого транзистора смещение составляет 0,4 В.
Выходные характеристики.
Теоретические выходные характеристики транзистора в схеме с общей базой EMBED Equation.3 при IЭ=const определяются зависимостью (5.6):
EMBED Equation.3 (5.6)
Они представлены на рис. 5-2,а. Вправо по горизонтальной оси принято откладывать рабочее, т. е. обратное, напряжение коллектора (отрицательное для транзисторов типа р-n-р и положительное для транзисторов типа n-р-n). Значения протекающего при этом тока коллектора откладывают по вертикальной оси вверх. Такой выбор осей координат выгоден тем, что область характеристик, соответствующая рабочим режимам, располагается при этом в первом квадранте, что удобно для расчетов.
Если ток эмиттера равен нулю, то зависимость EMBED Equation.3 представляет собой характеристику электронно-дырочного перехода: в цепи коллектора протекает небольшой собственный обратный ток IКо или с учетом равенства (5.7) ток IКБо. При Uэб=0 собственный обратный ток коллектора
EMBED Equation.3 (5.7)
При прямом напряжении коллектора ток изменяет направление и резко возрастает — открывается коллекторный переход (в целях наглядности на рис. 5-2 для положительных напряжений взят более крупный масштаб).

Рис 5-2
Если же в цепи эмиттера создан некоторый ток Iэ, то уже при нулевом напряжении коллектора в его цепи в соответствии с выражением (5.6) протекает ток Iк= EMBED Equation.3 I’э обусловленный инжекцией дырок из эмиттера. Поскольку этот ток вызывается градиентом концентрации дырок в базе, для его поддержания коллекторного напряжения не требуется.
При подаче на коллектор обратного напряжения ток его несколько возрастает за счет появления собственного тока коллекторного перехода IКБ0 и некоторого увеличения коэффициента переноса v, вызванного уменьшением толщины базы.
При подаче на коллектор прямого напряжения появляется прямой ток коллекторного перехода. Так как он течет навстречу току инжекции EMBED Equation.3 Iэ, то результирующий ток в цепи коллектора с ростом прямого напряжения до величины UK0 быстро уменьшается до нуля, затем при дальнейшем Рис 5-3 повышении прямого напряжения коллектора приобретает обратное направление и начинает быстро возрастать.
Если увеличить ток эмиттера до значения EMBED Equation.3 , то характеристика EMBED Equation.3 сместится пропорционально вверх на величину EMBED Equation.3 и т. д.
На рис. 5-2,б представлены реальные выходные характеристики транзистора МП14; они имеют такой же вид, как и теоретические, с учетом поправок на термоток перехода и ток его поверхностной проводимости.
Коэффициент передачи тока эмиттера. Как показывает опыт, коэффициент передачи тока а зависит от величины тока эмиттера (рис. 5-3).
С ростом тока эмиттера увеличивается напряженность внутреннего поля базы, движение дырок на коллектор становится более направленным, в результате уменьшаются рекомбинационные потери на поверхности базы, возрастает коэффициент переноса EMBED Equation.3 , а следовательно, и EMBED Equation.3 . При дальнейшем увеличении тока эмиттера снижается коэффициент инжекции и растут потерн на объемную рекомбинацию, поэтому коэффициент передачи тока EMBED Equation.3 начинает уменьшаться.
В целом зависимость коэффициента передачи тока EMBED Equation.3 от тока эмиттера в маломощных транзисторах незначительна, в чем можно убедиться, обратив внимание на масштаб по вертикальной оси рис. 5-3.
В транзисторах, работающих при высокой плотности тока, наблюдается значительное падение напряжения вдоль базы, обусловленное током базы; в результате напряжение в точках эмиттерного перехода, удаленных от вывода базы, оказывается заметно меньшим, чем в близлежащих. Поэтому эмиттерный ток концентрируется по периметру эмиттера ближе к выводу базы, эффективная площадь эмиттера получается меньше, чем при равномерной инжекции, и коэффициент EMBED Equation.3 быстро надает с ростом тока эмиттера. Для ослабления указанного явления применяют электроды, имеющие высокое отношение длины периметра к площади: кольцевые и гребенчатые.
Схема с общим эмиттером
Ранее были рассмотрены статические характеристики транзистора, включенного по схеме с общей базой, когда общая точка входной и выходной цепей находится на базовом электроде. Другой распространенной схемой включения транзистора является схема с общим эмиттером, в которой общая точка входной и выходной цепей соединена (рис. 5-4).
Входным напряжением в схеме с общим эмиттером является напряжение базы EMBED Equation.3 измеряемое относительно эмиттерного электрода. Для того чтобы эмиттерный переход был открыт, напряжение базы должно быть отрицательным (рассматривается транзистор типа р-n-р).
Выходным напряжением в схеме с общим эмиттером является напряжение коллектора EMBED Equation.3 измеряемое относительно эмиттерного электрода. Для того чтобы коллекторный переход был закрыт, напряжение коллектора должно быть большим по величине, чем прямое напряжение базы.
Отметим, что в схеме с общим эмиттером в рабочем режиме, когда транзистор открыт, полярность источников питания базы и коллектора одинакова.
Входные характеристики. Входные характеристики транзистора в схеме с общим
Рис. 5-4 эмиттером представляют собой зависимость тока базы от напряжения базы: EMBED Equation.3 при EMBED Equation.3 ;
Зависимость тока базы от напряжений эмиттера и коллектора найдем из уравнений (5.8) и (5.9).
EMBED Equation.3 (5.8)
EMBED Equation.3 (5.9)
Вычтя второе уравнение из первого, введя обозначения
EMBED Equation.3 (5.10)
EMBED Equation.3 (5.11)
и использовав соотношения EMBED Equation.3 и EMBED Equation.3 , окончательно получим
EMBED Equation.3 (5.12)
При большом обратном напряжении коллектора, когда EMBED Equation.3 , ток базы
EMBED Equation.3 (5.13)
Если при этом напряжение базы также обратное ( EMBED Equation.3 то ток базы идеального транзистора
EMBED Equation.3 (5.14)
В реальном транзисторе добавляются токи утечки и термотоки переходов, поэтому обратный ток базы закрытого транзистора
EMBED Equation.3 (5.15)
Входные характеристики транзистора показаны на рис. 5-5. При обратном напряжении базы и коллектора, т. е. в закрытом транзисторе, согласно выражению (5.15), ток базы EMBED Equation.3 является в основном собственным током коллекторного перехода EMBED Equation.3 . Поэтому при уменьшении обратного напряжения базы до нуля ток базы сохраняет свою величину: EMBED Equation.3 .
При подаче прямого напряжения на базу открывается эмиттерный переход и в цепи базы появляется рекомбинационная составляющая тока EMBED Equation.3 . Ток базы в этом режиме в соответствии с выражением EMBED Equation.3 ; при увеличении прямого напряжения он уменьшается вначале до нуля, а затем изменяет направление и возрастает почти экспоненциально согласно соотношению (5.12).

Рис 5-5 Рис 5-6
Когда на коллектор подано большое обратное напряжение, оно оказывает незначительное влияние на входные характеристики транзистора. Как видно из рис. 5-5, при увеличении обратного напряжения коллектора входная характеристика лишь слегка смещается вниз, что объясняется увеличением тока поверхностной проводимости коллекторного перехода и термотока.
При напряжении коллектора, равном нулю, ток во входной цепи значительно возрастает по сравнению с рабочим режимом EMBED Equation.3 ,потому что прямой ток базы в данном случае проходит через два параллельно включенных перехода— коллекторный и эмиттерный. В целом уравнение (5.12) достаточно точно описывает входные характеристики транзистора в схеме с общим эмиттером, но для кремниевых транзисторов лучшее совпадение получается, если EMBED Equation.3 вместо и брать EMBED Equation.3 .
Коэффициент передачи тока базы. Найдем зависимость тока коллектора от тока базы с помощью выражений:
EMBED Equation.3 ,
или EMBED Equation.3 (5.16)
Величина EMBED Equation.3 (5.17)
называется коэффициентом передачи тока базы. Поскольку коэффициент передачи тока эмиттера EMBED Equation.3 близок к единице, значение EMBED Equation.3 обычно лежит в пределах от 10 до 1000 и более.
Коэффициент передачи тока базы существенно зависит и от тока эмиттера (рис. 5-6). С ростом тока эмиттера коэффициент передачи тока базы вначале повышается вследствие увеличения напряженности внутреннего поля базы, ускоряющего перенос дырок через базу к коллектору и этим уменьшающего рекомбинационные потери на поверхности базы.
При значительной величине тока эмиттера коэффициент передачи тока базы EMBED Equation.3 начинает падать за счет снижения коэффициента инжекции, уменьшения эффективной площади эмиттера и увеличения рекомбинационных потерь в объеме базы.
Перечисленные причины обусловливают, как указывалось, небольшую зависимость коэффициента передачи тока эмиттера а от тока эмиттера Iэ (см. рис. 5-3). Но коэффициент передачи тока базы EMBED Equation.3 при изменении тока эмиттера может изменяться в несколько раз, поскольку в выражении (5.17) в знаменателе стоит разность близких величин EMBED Equation.3 .
Введя обозначение для коэффициента передачи тока базы EMBED Equation.3 в выражение (5.16), получим основное уравнение, определяющее связь между токами коллектора и базы в схеме с общим эмиттером:
EMBED Equation.3 (5.18)
Зависимость тока коллектора от напряжений базы и коллектора можно найти из выражения (5.48), заменив в нем UЭБ на -UБЭ и UКБ
EMBED Equation.3 (5.19)
Уравнения (5.18) и (5.19) являются основными для транзистора, включенного по схеме с общим эмиттером.
Выходные характеристики. Выходные характеристики транзистора в схеме с общим эмиттером EMBED Equation.3 при EMBED Equation.3 определяются соотношением (5.18) и изображены на рис. 5-7. Минимально возможная величина коллекторного тока получается в том случае, когда закрыты оба перехода - и коллектора базы в этом случае согласно выражению (5.14)
EMBED Equation.3 (5.20)
где EMBED Equation.3 - ток эмиттера закрытого транзистора.

Рис. 5-7
Ток коллектора закрытого транзистора в соответствии с выражениями (5.18) и (5.20)
EMBED Equation.3 (5.21)
Ввиду малости тока EMBED Equation.3 эта характеристика на рис.4,19 не видна, она совпадает с осью напряжений.
При токе базы, равном нулю, что имеет место при небольшом прямом напряжении базы, когда рекомбинационная составляющая тока базы EMBED Equation.3 равна обратному току коллекторного перехода EMBED Equation.3 . коллекторный ток в соответствии с выражением (5.18)
EMBED Equation.3 (5.22)
С ростом коллекторного напряжения заметно увеличение этого тока вследствие увеличения коэффициента передачи тока базы EMBED Equation.3 .
При токе базы EMBED Equation.3 выходная характеристика транзистора смещается вверх на величину EMBED Equation.3 . Соответственно выше идут характеристики при больших токах базы EMBED Equation.3 , EMBED Equation.3 и т. д. Ввиду зависимости коэффициента передачи тока базы от тока эмиттера расстояние по вертикали между характеристиками не остается постоянным: вначале оно возрастает, а затем уменьшается.
При снижении коллекторного напряжения до величины, меньшей напряжения базы, открывается коллекторный переход, что должно было бы повлечь за собой увеличение тока базы, но по условию он должен быть постоянным. Для поддержания тока базы на заданном уровне приходится снижать напряжение базы, что сопровождается уменьшением токов эмиттера и коллектора, поэтому выходные характеристики при EMBED Equation.3 имеют резкий спад. Транзистор переходит в режим насыщения, при котором неосновные носители заряда инжектируются в базу не только эмиттерным, но и коллекторным переходом Эффективность управления коллекторным током при этом существенно снижается, коэффициент передачи тока EMBED Equation.3 базы резко уменьшается.
Как показано на рис. 5-7 крупным масштабом в окружности, выходная характеристика при наличии тока базы не проходит через начало координат: при EMBED Equation.3 на коллекторе существует обратное напряжение EMBED Equation.3 порядка нескольких десятых вольта. Величину этого напряжения нетрудно найти из соотношения (5.19), обозначив EMBED Equation.3 при EMBED Equation.3 :
EMBED Equation.3
Отсюда
EMBED Equation.3 (5.23)
где EMBED Equation.3 - напряжение коллектора в схеме ОБ, при котором EMBED Equation.3 , а EMBED Equation.3 -напряжение, действующее в этот момент на базе.
Из формулы (5.23) вытекает физический смысл напряжения EMBED Equation.3 : оно должно иметь такую величину, чтобы создаваемый им ток инжекции коллекторного перехода EMBED Equation.3 полностью компенсировал поступающий з коллекторный переход ток инжекции эмиттерного перехода EMBED Equation.3 поскольку, по условию, результирующий коллекторный ток EMBED Equation.3 .
Для расчета транзисторных схем иногда применяют выходные характеристики, снятые при постоянном напряжении базы. Они отличаются от рассмотренных характеристик, снимаемых при постоянном токе базы, большей неравномерностью расстояний по вертикали между соседними характеристиками, обусловленной экспоненциальной зависимостью между напряжением и током базы.