Лекція 22. Колективна поведінка вимірювальних агентів. 1. Вимірювально-обчислювальні мережі (ВОМ) 1.1. Визначення. Ефективність роботи будь-якої системи зростає в залежності від того, наскільки повною (достовірною, точною) інформацією володіє ця система про своє оточення (середовище). Питаннями отримання інформації про оточення системи займається інформаційна теорія вимірювальної техніки. В цій теорії розглядається вимірювально-обчислювальний канал. Виірювально-обчислювальна мережа утворюється великою кількістю незалежних вимірювально-обчислювальних каналів, за допомогою яких досліджуються характеристики розподіленого у просторі об’єкта вимірювання. При цьому будується інформаційний портрет об’єкта вимірювання (рисунок). Основиними задачами, які вирішуються при побудові ВОМ є підвищення точності інформаційного портрету досліджуваного об’єкту (тобто збільшення кількості отриманої інформації про об’єкт = зменшення невизначенності стосвоно оточення системи), зменшення вартості процедури вимірювання (наприклад, зменшення часу отримання інформаційного портрету об’єкту вимірювання). Вимірювальний агент - це самостійний (автономний) вимірювально-обчислювальний канал, який здатен за власною ініціативою змінювати параметри вимірювання (наприклад, переміщуватись в просторі об’єкта, змінюючи координату точки вимірювання). Інтелектуальна ВОМ = колектив вимірювальних агентів. 1.2. Основні характеристики. Розподіленність вимірювачів у просторі. Автономність вимірювальних засобів (вимірювання відбуваються без втручання людини). Довготривалість вимірювань. Контактність або безконтактівсть вимірювань. Мобільність вимірювальних засобів. 1.3. Основні застосування. - розподілені контактні вимірювання (distributed sensing). - картографування (mapping). - колективний пошук (search) - локалізація (localization) - відслідковування траекторій (tracking) - польова развідка (field (indoor or outdoor) reconnaissance) 1.4. Приклади ВОМ: система збору гідрофізичної інформації у Світовому океані на основі автоматичних буйкових станцій (дрифтерів), система екологічного моніторингу країни або регіону на основі мобільних станцій екологічного моніторингу, система моніторингу глобальної обчислювальної мережі на основі мобільних програмних агентів. 2. Проблематика розподілених контактних вимірювань 2.1. Проблема оперативності управління: затримка сигналу між агентом і центром управління (Lg), як правило, набагато бальша ніж затримка сигналу між сусідніми агентами (La): Lg >> La. У випадку централізованого управління процесом вимірваюння команда на переміщення надходить до агента з затримкою 2Lg, а у випадку децентралізованого управління віддається відразу. Проблема оперативності управління стає тим гострішою, чим більше різниця між Lg і La. Іншими словами, чим далі від вимірювальних агентів знаходиться центр збору та обробки, тим більше централізоване управління програє децентралізованому в оперативності. Проблема оперативності управління є прямим наслідком основної проблеми розподілених систем. 2.2. Проблема розміщення вимірювальних агентів. Проблема полягає в тому, що різним способам розмішення N вимірювальних агентів відповідно у N точках простору розміром M відповідають різні по достовірності (якості) інформаційні портрити (відображення) об’єкту вимірювання. Проблема розміщення є прямим наслідком обмежень, які накладаються на кількість вимірювальних агентів (M >> N). Задача полягає у знаходженні такого розміщення вимірювальних агентів в просторі, яке б максимізувало достовірність відображення об’єкта вимірювань. Основною причиною цього обмеження є принцип мінімізації впливу засобу вимірювань на об’єкт дослідження (принцип непорушення природнього функціонування об’єкту досліджень), а також відносно висока вартість вимірювальних агентів.3. Інтерполяційна модель колективної поведінки вимірювальних агентів В інтерполяційній моделі колективних вимірювань передбачається, що агенти здійснюють контактні точкові вимірювання в заданому середовищі одного або більше параметрів. Модель виглядає наступним чином (рис.2). Є зовнішнє середовище (об’єкт вимірювання), в якому M точок поєднані між собою у єдину просторову структуру (наприклад, однорідну одновимірну незамкнену решітку з M вузлами). У зовнішньому середовищі реалізована деяка функція, яка задає значення параметрів середовища в кожній його точці. Таким чином в загальному випадку зовнішнє середовище характеризується: виміром (1D, 2D, 3D); кількістю точок (M); топологією з’єднань точок; кількістю параметрів; виглядом функції середовища (залежностями параметрів від часу та просторових координат). Колектив вимірювальних агентів розміщюється у зовнішьому середовищі. Кожний агент в один момент часу займає одну точку середовища. Кожен агент здатний вимірювати параметри середовища в тій точці, де він знаходиться. Кожен агент здатний переміщуватись у просторі за власною ініціативою з заданою наперед рівномірною швидкістю. Виміряні значення параметрів середовища агенти передають у центр збору та обробки (далі просто "центр"). В центрі будується функція відтворення за допомогою деякого методу інтерполяції. При цьому значення, виміряні і передані в центр агентами, виступають в ролі вузлів інтерполяції. Основною перевагою цієї моделі є можливість оцінити внесок кожного вимірювального агента у побудову інформаційного портрету (інформаційну корисність ВА ~ міра кількості вимірюваальної інформації, що здобута ВА). Інформаційна користність визначається як різниця у точності між повною моделлю та моделлю, що побудована без використання значеннь, що виміряні даним агентом. 4. Ентропійна модель колективної поведінки вимірювальних агентів В ентропійній моделі колективних вимірювань точки середовища в першому наближенні статистично незалежні. Схему можливих (допустимих) переміщень агентів у просторі задає граф з’єднань точок середовища. В кожний момент часу точка середовища може знаходитись в одному з К станів. Кожному стану ставиться у відповідність ймовірність перебування точки в цьому стані. Першопочатково припускаємо, що випадкові процеси, що реалізовані в точках середовища, є стаціонарними. Різним точкам ставляться у відповідність різні розподіли ймовірностей по станам. Виходячи з цього, для кожної точки можна визначити значення ентропії. Це значення будемо називати цільовим значенням ентропії точки. В даній моделі нас цікавить співвідношення цільової та максимальної ентропії точки (максимальна ентропія відповідає випадку, коли ймовірності появи кожного стану однакові). Чим більше відрізняються ці два значення, тим більше інформації в точці, якщо виходити з тверджень шенонівської теорії інформації. Перед початком експеримента в центрі будуються інформаційні портрети усіх точок з використанням принципу недостатнього обгрунтування Лапласа. Тобто першопочатково кожній точці ставляться у відповідність однакові ймовірності появи станів. Таким чином, кожна точка перед початком експерименту характеризується в центрі максимальним значенням ентропії. Метою колективу агентів, які постачають в центр інформацію про біжучий стан тих точок, в яких вони знаходяться, є збір усієї закладеної в середовище інформації (цільової ентропії) за можливо меншу кількість тактів моделювання (збільшення кількості отриманої інформації) та можливо меншу кількість переміщень між точками (зменшення вартості вимірювань). Задача має зміст лише в тому випадку, коли кількість агентів менше кількості точок середовища. Додатковим обмеженням є те, що в один момент часу в одній точці середовища може знаходитись один агент. Основною перевагою даної моделі є те, що з’являється можливість оцінити кількість інформації, яка отримується кожним агентом за кожний крок моделювання, шляхом підрахунку різниці значень ентропії інформаційного портрету точки до і після того, як отримано повідомлення про її біжучий стан від агента, який в ній знаходиться.