Лекция 9. Осциллятор. FIR фильтры
Полосовой фильтр на основе фильтра низких частот
В предыдущей лекции было показано, каким образом можно построить различные фильтры. Оказывается, любой из таких фильтров можно получить на основе фильтра низких частот с помощью универсальной процедуры.

Пусть имеется сигнал с преобразованием Фурье . Рассмотрим новую последовательность . По определению . Если нам нужен полосовой фильтр, можем поступить следующим образом. Сдвиг осуществляется генератором на основе осциллятора, о котором будет сказано ниже. Обратный сдвиг осуществляется так же.
Непосредственное применение указанного способа не удобно, поскольку приходится работать с комплексными числами, и в результате обратного сдвига получается, как правило, комплексный сигнал. Выход заключается в преобразовании . В результате . Если исходный сигнал имеет ограниченный спектр и выбран так, что носители и не пресекаются, задача решается без применения комплексных чисел. Например, пусть спектр находится в интервале 2kHz-4kHz, и требуется получить лишь часть сигнала в диапазоне 2.5kHz-3.5kHz. Выбираем =3kHz и используем фильтр низких частот с полосой пропускания 0.5kHz. После обратного сдвига придется использовать еще один фильтр низких частот с полосой пропускания 3.5kHz.
Фильтр как осциллятор
Выше отмечалось, что для сдвига спектра последовательности требуется источник, генерирующий последовательности вида . Обычный способ генерирования таких последовательностей не годится, поскольку возникает проблема подсчета фукнции от большого аргумента. Существует альтернативный способ генерации, основанный на теории фильтров.
Для устойчивости фильтра достаточно, чтобы все корни находились внутри единичной окружности. Если корни лежат на окружности, фильтр можно использовать для генерации. Рассмотрим уравнение
(1)
Уравнение имеет два корня , поэтому (1) можно записать в виде . Из полученного равенства следуют два рекуррентных соотношения: . Вычитая из первого уравнения второе, получим

Полагая , получим . Аналогично, взяв , найдем, что .
Фазовый сдвиг сигнала в результате фильтрации
При проектировании фильтра учитывался лишь модуль передаточной функции. В общем случае . Здесь аргумент передаточной функции. Если спектр исходного сигнала сосредоточен в точке , то в результате фильтрации, кроме изменения интенсивности, происходит сдвиг фильтрованного сигнала на величину по отношению к исходному. При сравнении исходного сигнала с соредоточенным спектром и результирующего наблюдается сдвиг одного относительно другого. В общем случае наблюдается фазовое искажение сигнала, однако, одно не улавливается ухом. В то же время, когда важна фаза сигнала, приходится использовать методы компенсации или фильтр с вещественной передаточной функцией. Для компенсации фазового искажения можно использовать, например, фильтры вида
, где -любое число,. Это устойчивый фильтр, а его передаточная фукнция имеет вид . Модуль этой передаточной функции равен 1, а аргумент меняется вместе с частотой.
Фильтры с конечным временем отклика
Рассмотрим фильтр, заданный равенством
(2)
Это фильтр с конечным временем отклика (FIR). После преобразования Фурье получим . Если дополнительно предположим, что , то получим симметрический фильтр. Для него передаточная функция будет вещественной, и фильтр не вносит фазовых искажений.
Проектирование FIR фильтров. Сглаживающие окна
Предположим, что функция задана на интервале . Представим ее в виде ряда . Для получения FIR фильтра с аппроксимирующей передаточной функцией можно оставить лишь конечное число слагаемых в этой сумме. Если выбираются максимальные по модулю коэффициенты, то результирующая передаточная функция будет наилучшей аппроксимацией в смысле наименьших квадратов при заданном числе слагаемых. Оказывается, что такой подход не всегда приемлем. Выясним, что происходит при обрезании ряда. Введем функцию равную 1 при и 0 в остальных точках. Тогда . Непосредственно находим, что . График этой функции изображен на рисунке.

Она напоминает функцию, но содержит и боковые лепестки. В результате свертки с оригиналом при вычислении  участвуют как значения , так и значения этой функции в окрестности лепестков функции .

Чтобы снизит указанный эффект вместо прямоугольных окон используются другие окна: треугольные окна, окно Хэмминга , Хэнинга и некоторые другие. Эти окна отличаются тем, что для их преобразований Фурье боковые лепестки выражены менее ярко. На рисунке показано преобразование Фурье от функции Хэмминга.