Цель работы: определение диэлектрической проницаемости и поляризационных характеристик различных диэлектриков, изучение электрических свойств полей, в них исследование линейности и дисперсии диэлектрических свойств материалов.
Теоретическая часть:
Схема экспериментальной установки.
В эксперименте используются следующие приборы: два вольтметра PV1 (стрелочный) и PV2 (цифровой) , генератор сигналов низкочастотный, макет-схема, на которой установлен резистор R=120 Ом, конденсатор, состоящий из набора пластин различных диэлектриков (толщиной d=2 мм) .
Собираем схему, изображенную на РИС. 1. Ставим переключатель SA в положение 1. Подготавливаем к работе и включаем приборы. Подаем с генератора сигнал частоты f = 60 кГц и напряжением U=5 В, затем по вольтметру PV1 установить напряжение U1=5 В. Далее, вращая подвижную пластину, измеряем напряжение U2 для конденсатора без диэлектрика и 4-x конденсаторов с диэлектриками одинаковой толщины. При этом напряжение U1 поддерживаем постоянным.
Напряженность поля между пластинами в вакууме Е 0 вычисляется по формуле: где При внесении пластины в это поле диэлектрик поляризуется и на его поверхности появляются связанные заряды с поверхностной плотностью . Эти заряды создают в диэлектрике поле , направленное против внешнего поля , и имеет величину: . Результирующее поле: . В электрическом поле вектор поляризации: , где c - диэлектрическая восприимчивость вещества. Связь модуля вектора поляризации с плотностью связанных зарядов: . относительная диэлектрическая проницаемость диэлектрика. Вектор электрической индукции . Этот вектор определяется только свободными зарядами и вычисляется как . В рассматриваемой задаче на поверхности диэлектрика их нет. Вектор D связан с вектором Е следующим соотношением .
Экспериментальная часть:
В данной работе используются формулы: , где S - площадь пластины конденсатора, d - расстояние между ними. Диэлектрическая проницаемость материала: . Для емкости конденсатора имеем: , где U 1 - напряжение на RC цепи, U 2 - напряжение на сопротивлении R, f - частота переменного сигнала. В плоском конденсаторе напряженность связана с напряжением U 1 как:
Опыт №1. Измерение диэлектрической проницаемости и характеристик поляризации материалов.
U 1 = 5В, R=120Ом, f=60 кГц, d=0,002м.
Материал |
U 2 , мВ |
Воздух |
40 |
Стеклотекстолит |
97 |
Фторопласт |
61 |
Гетинакс |
89 |
Оргстекло |
76 |
С В =176 пкФ; С СТ =429 пкФ; С ФП =270 пкФ; С ГН =393 пкФ; С ОС =336 пкФ; ; ; ; ;
Для гетинакса подсчитаем:
; ; ; ; ; ; ; ;
Расчет погрешностей:
; ; ;
;
;
(так как ) .
; Опыт № 2. Исследование зависимости e = f(E) .
R=120Ом, f=60 кГц, d=0,002м.
U 1 , В |
U 2 , В (воздух) |
U 2 , В (гетинакс) |
С 0 , пкФ |
С, пкФ |
Е, В/м |
e |
1 |
0,009 |
0,019 |
200 |
420 |
500 |
2,10 |
2 |
0,016 |
0,036 |
177 |
398 |
1000 |
2,24 |
3 |
0,025 |
0,052 |
184 |
387 |
1500 |
2,09 |
4 |
0,031 |
0,070 |
171 |
384 |
2000 |
2,26 |
5 |
0,039 |
0,086 |
172 |
380 |
2500 |
2,21 |
График зависимости e = f(E) - приблизительно прямая, так как диэлектрическая проницаемость не зависит от внешнего поля.
Опыт № 3. Исследование зависимости диэлектрической проницаемости среды от частоты внешнего поля.
U 1 = 5В, R=120Ом.
f , кГц |
U 2 , В (воздух) |
U 2 , В (гетинакс) |
Х С , кОм (гетинакс) |
С 0 , пкФ |
С, пкФ |
e |
20 |
0,015 |
0,030 |
20,0 |
199 |
398 |
2,00 |
40 |
0,029 |
0,059 |
10,2 |
192 |
391 |
2,04 |
60 |
0,041 |
0,089 |
6,7 |
181 |
393 |
2,07 |
80 |
0,051 |
0,115 |
5,2 |
169 |
381 |
2,25 |
100 |
0,068 |
0,146 |
4,1 |
180 |
387 |
2,15 |
120 |
0,078 |
0,171 |
3,5 |
172 |
378 |
2,18 |
140 |
0,090 |
0,197 |
3,0 |
181 |
373 |
2,18 |
160 |
0,101 |
0,223 |
2,7 |
167 |
370 |
2,21 |
180 |
0,115 |
0,254 |
2,4 |
169 |
374 |
2,21 |
200 |
0,125 |
0,281 |
2,2 |
166 |
372 |
2,24 |
По графику зависимости e = F(f) видно, что диэлектрическая проницаемость среды не зависит от частоты внешнего поля. График зависимости Х С =F(1/f) подтверждает, что емкостное сопротивление зависит от 1/f прямо пропорционально.
Опыт № 4. Исследование зависимости емкости конденсатора от угла перекрытия диэлектрика верхней пластиной.
U 1 = 5В, R=120Ом, f=60 кГц, d=0,002м, r=0,06м, n=18.
a, 0 |
U 2 , В |
С, пкФ |
С теор , пкФ |
0 |
0,039 |
172 |
150 |
10 |
0,048 |
212 |
181 |
20 |
0,056 |
248 |
212 |
30 |
0,063 |
279 |
243 |
40 |
0,072 |
318 |
273 |
50 |
0,080 |
354 |
304 |
60 |
0,089 |
393 |
335 |
Опыт № 5. Измерение толщины диэлектрической прокладки.
U 1 = 5В, R=120Ом, f=60 кГц.
Схема конденсатора с частичным заполнением диэлектриком.
U 2 (стеклотекстолит тонкий) =0,051В, U 2 (стеклотекстолит толстый) =0,093В, U 2 (воздух) =0,039В.
С 0 =172пкФ - без диэлектрика; С 1 = 411пкФ - стеклотекстолит толстый; С 1 = 225пкФ - стеклотекстолит тонкий.
; ; ; ;
; ; ;
Вывод: На этой работе мы определили диэлектрическую проницаемость и поляризационные характеристики различных диэлектриков, изучили электрические свойства полей, в них исследовали линейность и дисперсность диэлектрических свойств материалов.