Системное программное обеспечение

Данный интерпретатор реализует
основных арифметических действия в виде инфиксных операций над числами с
плавающей точкой. Например входной поток имеет вид: Результат вычислений для первой
входной строки равен 2.5, а результат для второй строки - это 19.635. Программа
интерпретатора состоит из четырех основных частей: анализатора, функции ввода,
таблицы имен и драйвера. Анализатор проводит синтаксический анализ, функция
ввода обрабатывает входные данные и проводит лексический анализ, таблица имен
хранит постоянную информацию, нужную для работы, а драйвер выполняет
инициализацию, вывод результатов и обработку ошибок. END // END - это конец ввода выражение PRINT
список-выражений первичное NAME = выражение
Иными словами, программа есть последовательность строк, а каждая строка содержит
одно или несколько выражений, разделенных точкой с запятой. Основные элементы
выражения - это числа, имена и операции *, /, +, - (унарный и бинарный минус) и
=. Имена необязательно описывать до использования. Для синтаксического
анализа используется метод, обычно называемый рекурсивным спуском. Это
распространенный и достаточно очевидный метод. В таких языках как С++, то есть в
которых операция вызова не сопряжена с большими накладными расходами, это метод
эффективен. Для каждого правила грамматики имеется своя функция, которая
вызывает другие функции. Терминальные символы (например, END, NUMBER, + и -)
распознаются лексическим анализатором get_token(). Нетерминальные символы
распознаются функциями синтаксического анализатора expr(), term() и prim(). Как
только оба операнда выражения или подвыражения стали известны, оно вычисляется.
В настоящем трансляторе в этот момент создаются команды, вычисляющие
выражение. Анализатор использует для ввода функцию get_token(). Значение
последнего вызова get_token() хранится в глобальной переменной curr_tok.
Переменная curr_tok принимает значения элементов перечисления token_value: PRINT=';', ASSIGN='=', LP='(', RP=')' Для всех функций анализатора предполагается, что get_token() уже
была вызвана, и поэтому в curr_tok хранится следующая лексема, подлежащая
анализу. Это позволяет анализатору заглядывать на одну лексему вперед. Каждая
функция анализатора всегда читает на одну лексему больше, чем нужно для
распознавания того правила, для которого она вызывалась. Каждая функция
анализатора вычисляет "свое" выражение и возвращает его результат. Функция
expr() обрабатывает сложение и вычитание. Она состоит из одного цикла, в котором
распознанные термы складываются или вычитаются: switch(curr_tok) { get_token(); // случай '-' Отметим, что
выражения вида 2-3+4 вычисляются как (2-3)+4, что предопределяется правилами
грамматики. case MUL: double d =
prim(); Проверка отсутствия деления на нуль
необходима, поскольку результат деления на нуль неопределен и, как правило,
приводит к катастрофе. Функция error() будет рассмотрена позже. Переменная d
появляется в программе там, где она действительно нужна, и сразу же
инициализируется. char
name_string[256]; case NUMBER: // константа с плавающей точкой name* n =
insert(name_string); case MINUS: // унарный
минус if (curr_tok != RP) return error("требуется )"); } Когда появляется NUMBER (то есть константа с
плавающей точкой), возвращается ее значение. Функция ввода get_token() помещает
значение константы в глобальную переменную number_value. Если в программе
используются глобальные переменные, то часто это указывает на то, что структура
не до конца проработана, и поэтому требуется некоторая оптимизация. Именно так
обстоит делов данном случае. В идеале лексема должна состоять из двух частей:
значения, определяющего вид лексемы (в данной программе это token_value), и
(если необходимо) собственно значения лексемы. Здесь же имеется только одна
простая переменная curr_tok, поэтому для хранения последнего прочитанного
значения NUMBER требуется глобальная переменная number_value. Такое решение
проходит потому, что калькулятор во всех вычислениях вначале выбирает одно
число, а затем считывает другое из входного потока. Если последнее значение
NUMBER хранится в глобальной переменной number_value, то строковое представление
последнего значения NAME хранится в name_string. Перед тем, как что-либо делать
с именем, интерпретатор должен заглянуть вперед, чтобы выяснить, будет ли ему
присваиваться значение, или же будет только использоваться существующее его
значение. В обоих случаях надо обратиться к таблице имен. Эта таблица состоит из
записей, имеющих вид: Член next используется только служебными функциями,
работающими с таблицей: Обе функции возвращают указатель на ту запись name, которая
соответствует их параметру-строке. Функция look() "ругается", если имя не было
занесено в таблицу. Это означает, что в калькуляторе можно использовать имя без
предварительного описания, но в первый раз оно может появиться только в левой
части присваивания. Получение входных данных - часто
самая запутанная часть программы. Причина кроется в том, что программа должна
взаимодействовать с пользователем, то есть "мириться" с его прихотями, учитывать
принятые соглашения и предусматривать кажущиеся редкими ошибки. Попытки
заставить человека вести себя более удобным для машины образом, как правило,
рассматриваются как неприемлемые, что справедливо. Задача ввода для функции
низкого уровня состоит в последовательном считывании символов и составлении из
них лексемы, с которой работают уже функции более высокого уровня. В этом
примере низкоуровневый ввод делает функция get_token(). Правила ввода для
интерпретатора были специально выбраны несколько громоздкими для потоковых
функций ввода. Незначительные изменения в определениях лексем превратили бы
get_token() в обманчиво простую функцию. Первая сложность состоит в том, что
символ конца строки '\n' важен для калькулятора, но потоковые функции ввода
воспринимают его как символ обобщенного пробела. Иначе говоря, для этих функций
'\n' имеет значение только как символ, завершающий лексему. Поэтому
приходится анализировать все обобщенные пробелы (пробел, табуляция и т.п.). Это
делается в операторе do : } while (ch!='\n'
&& isspace(ch)); Функция cin.get(ch) читает один символ из
стандартного входного потока в ch. Значение условия if(!cin.get(ch)) - ложь,
если из потока cin нельзя получить ни одного символа. Тогда возвращается лексема
END, чтобы закончить работу калькулятора. Операция ! (NOT) нужна потому, что в
случае успешного считывания get() возвращает ненулевое значение. Функция-
подстановка isspace() из <ctype.h> проверяет, не является ли ее параметр
обобщенным пробелом. Она возвращает ненулевое значение, если является, и нуль в
противном случае. Проверка реализуется как обращение к таблице, поэтому для
скорости лучше вызывать isspace(), чем проверять самому. То же можно сказать о
функциях isalpha(), isdigit() и isalnum(), которые используются в
get_token(). После пропуска обобщенных пробелов следующий считанный символ
определяет, какой будет начинающаяся с него лексема. Прежде, чем привести всю
функцию, рассмотрим некоторые случаи отдельно. Лексемы '\n' и ';', завершающие
выражение, обрабатываются следующим образом: return
curr_tok=PRINT; Необязательно снова пропускать пробел, но, сделав это, мы
избежим повторных вызовов функции get_token(). Переменная ws, описанная в файле
<stream.h>, используется только как приемник ненужных пробелов. Ошибка
во входных данных, а также конец ввода не будут обнаружены до следующего вызова
функции get_token(). Обратите внимание, как несколько меток выбора помечают одну
последовательность операторов, заданную для этих вариантов. Для обоих символов
('\n' и ';') возвращается лексема PRINT, и она же помещается в curr_tok. case '5': case '6': case '7': case '8': case '9': Поскольку оператор >> может читать константу с
плавающей точкой типа double, программа тривиальна: прежде всего начальный
символ (цифра или точка) возвращается назад в cin, а затем константу можно
считать в number_value. Имя, т.е. лексема NAME, определяется как буква, за
которой может идти несколько букв или цифр: while (cin.get(ch) && isalnum(ch)) *p++
= ch; Этот
фрагмент программы заносит в name_string строку, оканчивающуюся нулевым
символом. Функции isalpha() и isalnum() определены в <ctype.h>. Приведем функцию ввода полностью:
if(!cin.get(ch)) return curr_tok = END; cin >> ws;
// пропуск обобщенного пробела return
curr_tok=token_value(ch); case '.': if (isalpha(ch)) { cin.putback(ch);
Преобразование операции в значение лексемы для нее тривиально, поскольку в
перечислении token_value лексема операции была определена как целое (код символа
операции). Второй ее параметр показывает,
была ли символьная строка, обозначающая имя, ранее занесена в таблицу.
Инициализатор =0 задает стандартное значение параметра, которое используется,
если функция look() вызывается только с одним параметром. Это удобно, так как
можно писать look("sqrt2"), что означает look("sqrt2",0), т.е. поиск, а не
занесение в таблицу. Чтобы было так же удобно задавать операцию занесения в
таблицу, определяется вторая функция: Как ранее упоминалось, записи в этой таблице имеют
такой тип: Член next используется для связи записей в таблице. Собственно
таблица - это просто массив указателей на объекты типа name: Поскольку по умолчанию все статические объекты
инициализируются нулем, такое тривиальное описание таблицы table обеспечивает
также и нужную инициализацию. Для поиска имени в таблице функция look()
использует простой хэш-код (записи, в которых имена имеют одинаковый хэш-код,
связываются вместе): if (ii < 0) ii = -ii; Иными словами, с помощью операции ^ ("исключающее ИЛИ") все символы
входной строки p поочередно добавляются к ii. Разряд в результате x^y равен 1
тогда и только тогда, когда эти разряды в операндах x и y различны. До
выполнения операции ^ значение ii сдвигается на один разряд влево, чтобы
использовался не только один байт ii. Эти действия можно записать таким
образом: Для хорошего хэш-кода лучше
использовать операцию ^, чем +. Операция сдвига важна для получения приемлемого
хэш-кода в обоих случаях. гарантируют, что значение ii будет из диапазона 0...TBLSZ-1.
Напомним, что % - это операция взятия остатка. Ниже полностью приведена функция
look: const char* pp = p; for
(name* n=table[ii]; n; n=n->next) // поиск name* nn = new
name; // занесение nn->next = table[ii]; После вычисления хэш-кода ii идет простой поиск
имени по членам next. Имена сравниваются с помощью стандартной функции сравнения
строк strcmp(). Если имя найдено, то возвращается указатель на содержащую его
запись, а в противном случае заводится новая запись с этим именем. Добавление
нового имени означает создание нового объекта name в свободной памяти с помощью
операции new, его инициализацию и включение в список имен. Последнее выполняется
как занесение нового имени в начало списка, поскольку это можно сделать даже без
проверки того, есть ли список вообще. Символьная строка имени также
размещается в свободной памяти. Функция strlen() указывает, сколько памяти нужно
для строки, операция new отводит нужную память, а функция strcpy() копирует в
нее строку. Все строковые функции описаны в <string.h>: extern
char* strcpy(char*, const char*); Поскольку
программа достаточно проста, не надо особо беспокоиться об обработке ошибок.
Функция error просто подсчитывает число ошибок, выдает сообщение о них и
возвращает управление обратно:
no_of_errors++; Небуферизованный выходной поток cerr
обычно используется именно для выдачи сообщений об ошибках. Управление
возвращается из error() потому, что ошибки, как правило, встречаются посреди
вычисления выражения. Значит надо либо полностью прекращать вычисления, либо
возвращать значение, которое не должно вызвать последующих ошибок. Для простого
калькулятора больше подходит последнее. Если бы функция get_token() отслеживала
номера строк, то функция error() могла бы указывать пользователю приблизительное
место ошибки. Это было бы полезно при неинтерактивной работе с
калькулятором. Часто после появления ошибки программа должна завершиться,
поскольку не удалось предложить разумный вариант ее дальнейшего выполнения.
Завершить ее можно с помощью вызова функции exit(), которая заканчивает работу с
выходными потоками и завершает программу, возвращая свой параметр в качестве ее
результата. Когда все части программы определены, нужен
только драйвер, чтобы инициализировать и запустить процесс. В нашем примере с
этим справится функция main():
insert("e")->value = 2.7182818284590452354; cout << expr() << '\n'; Принято, что функция main() возвращает нуль, если программа завершается
нормально, и ненулевое значение, если происходит иначе. Ненулевое значение
возвращается как число ошибок. Оказывается, вся инициализация сводится к
занесению предопределенных имен в таблицу. cout << expr() <<
'\n'; Для удобства пользования
интерпретатором используем параметры командной строки. Как уже было сказано,
выполнение программы начинается вызовом main(). При этом вызове main() получает
два параметра: число параметров (обычно называемый argc) и массив строк
параметров (обычно называемый argv). Параметры - это символьные строки,
поэтому argv имеет тип char*[argc+1]. Имя программы (в том виде, как оно было
задано в командной строке) передается в argv[0], поэтому argc всегда не меньше
единицы. Например, для командной строки argv[2]
0 case 1: //
считывать из стандартного входного потока
default: insert("pi")->value =
3.1415926535897932385; if (curr_tok ==
PRINT) continue; При этом istrstream - это функция istream, которая
считывает символы из строки, являющейся ее первым параметром. Чтобы использовать
istrstream нужно включить в программу файл <strstream.h>, а не обычный
<iostream.h>. В остальном же программа осталась без изменений, кроме
добавления параметров в функцию main() и использования их в операторе switch.
Можно легко изменить функцию main() так, чтобы она могла принимать несколько
параметров из командной строки. Однако это не слишком нужно, тем более, что
можно нескольких выражений передать как один параметр: Кавычки необходимы потому, что
символ ';' служит в системе UNIX разделителем команд. В других системах могут
быть свои соглашения о параметрах командной строки. #include <ctype.h> PRINT=';',
ASSIGN='=', LP='(', RP=')' const TBLSZ =
23;
cerr << "error: " << s << "\n"; while (*pp) ii = ii<<1 ^ *pp++; if (strcmp(p,n-
>string) == 0) return n; strcpy(nn-
>string,p); inline name* insert(char* s) { return look (s,1);
} switch (curr_tok) { break; for (;;) double d = prim(); int
number_value; return number_value; n->value = expr(); return -
prim(); return e; { case '+': case '0': case '1': case '2': case '3': case '4':
cin >> number_value; while (cin.get(ch)
&& isalnum(ch)) *p++ = ch;
} cin = *new istream(strlen(argv[1]),argv[1]); insert("pi")->value = 3.1415926535897932385; if (curr_tok == PRINT)
continue;