1 Литературный обзор.
Краткая история развития искусственного интеллекта.
Искусственный интеллект (ИИ) - это область исследований, находящаяся на стыке наук, специалисты, работающие в этой области, пытаются понять, какое поведение, считается разумным (анализ), и создать работающие модели этого поведения (синтез). Практической целью является создание методов и техники, необходимой для программирования «разумности» и ее передачи вычислительным машинам (ВМ), а через них всевозможным системам и средствам.[1]
В 50-х годах исследователи в области ИИ пытались строить разумные машины, имитируя мозг. Эти попытки оказались безуспешными по причине полной непригодности как аппаратных так и программных средств.
В 60-х годах предпринимались попытки отыскать общие методы решения широкого класса задач, моделируя сложный процесс мышления. Разработка универсальных программ оказалась слишком трудным и бесплодным делом. Чем шире класс задач, которые может решать одна программа, тем беднее оказываются ее возможности при решении конкретной проблемы.[5]
В начале 70-х годов специалисты в области ИИ сосредоточили свое внимание на разработке методов и приемов программирования, пригодных для решения более специализированных задач: методов представления (способы формулирования проблемы для решения на средствах вычислительной техники (ВТ)) и методах поиска (способы управления ходом решения так, чтобы оно не требовало слишком большого объема памяти и времени).
И только в конце 70-х годов была принята принципиально новая концепция, которая заключается в том, что для создания интеллектуальной программы ее необходимо снабдить множеством высококачественных специальных знаний о некоторой предметной области. Развитие этого направления привело к созданию экспертных систем (ЭС).[6]
В 80-х годах ИИ пережил второе рождение. Были широко осознаны его большие потенциальные возможности как в исследованиях, так и в развитии производства. В рамках новой технологии появились первые коммерческие программные продукты. В это время стала развиваться область машинного обучения. До этих пор перенесение знаний специалиста-эксперта в машинную программу было утомительной и долгой процедурой. Создание систем, автоматически улучшающих и расширяющих свой запас эвристических (не формальных, основанных на интуитивных соображениях) правил - важнейший этап в последние годы. В начале десятилетия в различных странах были начаты крупнейшие в истории обработки данных национальные и международные исследовательские проекты, нацеленные на «интеллектуальные ВМ пятого поколения».[1]
Исследования по ИИ часто классифицируются, исходя из области их применения, а не на основе различных теорий и школ. В каждой из этих областей на протяжении десятков лет разрабатывались свои методы программирования, формализмы; каждой из них присущи свои традиции, которые могут заметно отличаться от традиций соседней области исследования. В настоящее время ИИ применяется в следующих областях:
обработка естественного языка;
экспертные системы (ЭС);
символьные и алгебраические вычисления;
доказательства и логическое программирование;
программирование игр;
обработка сигналов и распознавание образов;
и др.
1.2 Языки программирования ИИ.
1.2.1 Классификация языков и стилей программирования.
Все языки программирования можно разделить на процедурные и декларативные языки. Подавляющее большинство используемых в настоящее время языков программирования (Си, Паскаль, Бейсик и т. п.) относятся к процедурным языкам. Наиболее существенными классами декларативных языков являются функциональные (Лисп, Лого, АПЛ и т. п.) и логические (Пролог, Плэнер, Конивер и др.) языки (рис.1).
На практике языки программирования не являются чисто процедурными, функциональными или логическими, а содержат в себе черты языков различных типов. На процедурном языке часто можно написать функциональную программу или ее часть и наоборот. Может точнее было бы вместо типа языка говорить о стиле или методе программирования. Естественно различные языки поддерживают разные стили в разной степени.[1]
Процедурная программа состоит из последовательности операторов и предложений, управляющих последовательностью их выполнения. Типичными операторами являются операторы присваивания и передачи управления, операторы ввода-вывода и специальные предложения для организации циклов. Из них можно составлять фрагменты программ и подпрограммы. В основе процедурного программирования лежат взятие значения какой-то переменной, совершение над ним действия и сохранения нового значения с помощью оператора присваивания, и так до тех пор пока не будет получено (и, возможно, напечатано) желаемое окончательное значение.[2]
ЯЗЫКИ ПРОГРАММИРОВАНИЯ
ПРОЦЕДУРНЫЕ ЯЗЫКИ ДЕКЛАРАТИВНЫЕ ЯЗЫКИ
Паскаль, Си, Фортран, ...
ЛОГИЧЕСКИЕ ЯЗЫКИ ФУНКЦИОНАЛЬНЫЕ ЯЗЫКИ
Пролог, Mandala... Лисп, Лого, АРЛ, ...

Рис.1 Классификация языков программирования
Логическое программирование - это один из подходов к информатике, при котором в качестве языка высокого уровня используется логика предикатов первого порядка в форме фраз Хорна. Логика предикатов первого порядка - это универсальный абстрактный язык предназначенный для представления знаний и для решения задач. Его можно рассматривать как общую теорию отношений. Логическое программирование базируется на подмножестве логики предикатов первого порядка, при этом оно одинаково широко с ней по сфере охвата. Логическое программирование дает возможность программисту описывать ситуацию при помощи формул логики предикатов, а затем, для выполнения выводов из этих формул, применить автоматический решатель задач (т. е. некоторую процедуру). При использовании языка логического программирования основное внимание уделяется описанию структуры прикладной задачи, а не выработке предписаний компьютеру о том, что ему следует делать. Другие понятия информатики из таких областей, как теория реляционных баз данных, программная инженерия и представление знаний, также можно описать (и, следовательно, реализовать) с помощью логических программ.[8].
Функциональная программа состоит из совокупности определений функций. Функции, в свою очередь, представляют собой вызовы других функций и предложений, управляющих последовательностью вызовов. Вычисления начинаются с вызова некоторой функции, которая в свою очередь вызывает функции, входящие в ее определение и т. д. в соответствии с иерархией определений и структурой условных предложений. Функции часто либо прямо, либо опосредованно вызывают сами себя.[2]
Каждый вызов возвращает некоторое значение в вызывавшую его функцию, вычисление которой после этого продолжается; этот процесс повторяется до тех пор пока запустившая вычисления функция не вернет конечный результат пользователю.
«Чистое» функциональное программирование не признает присваиваний и передач управления. Разветвление вычислений основано на механизме обработки аргументов условного предложения. Повторные вычисления осуществляются через рекурсию, являющуюся основным средством функционального программирования.[1]

Сравнительные характеристики языков ИИ.
На первом этапе развития ИИ (в конце 50-х - начале 60-х годов) не существовало языков и систем, ориентированных специально на области знаний. Появившиеся к тому времени универсальные языки программирования казались подходящим инструментом для создания любых (в том числе и интеллектуальных ) систем, поскольку в этих языках можно выделить декларативную и процедурную компоненты. Казалось, что на этой базе могут быть интерпретированы любые модели и системы представления знаний. Но сложность и трудоемкость таких интерпретаций оказались настолько велики, что прикладные системы для реализации были недоступны. Исследования показали, что производительность труда программиста остается постоянной независимо от уровня инструментального языка, на котором он работает, а соотношение между длиной исходной и результирующей программ примерно 1:10. Таким образом, использование адекватного инструментального языка повышает производительность труда разработчика системы на порядок, и это при одноступенчатой трансляции. Языки предназначенные для программирования интеллектуальных систем содержат иерархические (многоуровневые) трансляторы и увеличивают производительность труда в 100-ни раз. Все это подтверждает важность использования адекватных инструментальных средств.[7]
Языки обработки символьной информации.
Лисп.
Язык Лисп был разработан в Стэнфорде под руководством Дж. Маккарти в начале 60-х годов. По первоначальным замыслам он должен был0 включать наряду со всеми возможностями Фортрана средства работы с матрицами, указателями и структурами из указателей и т. п. Но для такого проекта не хватило средств. Окончательно сформированные принципы положенные в основу языка Лисп: использование единого спискового представления для программ и данных; применение выражений для определения функций; скобочный